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Aleš Černý

Princeton University Press

Princeton and Oxford



Copyright c© 2009 by Princeton University Press

Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,
6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

All Rights Reserved

ISBN: 978-0-691-14121-3

Library of Congress Control Number: 2009923897

British Library Cataloging-in-Publication Data is available

This book has been composed in Times using TEX
Typeset and copyedited by T&T Productions Ltd, London

Printed on acid-free paper ∞

press.princeton.edu

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



To my parents, with love





Give me but one firm spot on which to stand,
and I will move the earth
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10.3 Important Itô Processes 220
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10.7 Itô Processes as Martingales 228
10.8 Appendix: Proof of the Itô Formula 229
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Preface to the Second Edition

The second edition of Mathematical Techniques in Finance appears at a very tur-
bulent time in the global financial markets. The collapse of the U.S. subprime
mortgage market and the ensuing payouts on insurance contracts known as credit
default swaps have caused a massive tightening of credit supply around the world
and left many apparently healthy financial institutions reeling, some taken over by
their rivals and still others nationalized by their respective governments.

Against this background the subtitle of this textbook, Tools for Incomplete Mar-
kets, seems ever more timely. It reminds us that no amount of financial engineering
can protect investors from all financial risk. It urges us to acknowledge this risk and
to model it realistically, rather than assuming it away as a mathematical inconve-
nience.

There are three substantial changes in the second edition. First, the computing
environment supported by the textbook has changed from GAUSS to MATLAB.
Second, I have incorporated a new chapter on finite-difference methods, developed
for students at Cass Business School, City University London. This becomes Chap-
ter 12 and the material on mean-variance hedging for incomplete markets finds a
new home in Chapter 13. Finally, I have made available a set of classroom-tested
slides, divided into two-hour blocks. These are aimed primarily at instructors, but
can also be used as an aid to self-study. All supporting materials for the second
edition can be found at

http://press.princeton.edu/titles/9079.html

Bibliographic references have been updated throughout, with particular emphasis
on Chapters 3 and 13, which map recent research in the area of incomplete markets. I
am grateful to my coauthors Chris Brooks, Jan Kallsen, Fabio Maccheroni, Massimo
Marinacci, Joelle Miffre and Aldo Rustichini for their substantial contributions to
my understanding of the finance of incomplete markets. I would like to thank Sam
Clark of T&T Productions Ltd for his editorial guidance and careful implementation
of the many changes in this edition. My biggest thanks go to Richard Baggaley for
a decade of continuing support and encouragement.

Study Guide

Before you start reading the book take a look at the book’s website (URL above) to
find out what resources are available.

Not all the material in this book is suitable for all students. There are essen-
tially two long coherent themes appropriate for Master’s programmes, and several
digressions intended for short courses aimed at doctoral students. The difficulty is
largely conceptual, not mathematical. The book uses linear algebra at the level of
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Anton (2000), calculus at the level of Binmore and Davies (2001) and probability
at the level of Mood et al. (1974); all three are standard undergraduate textbooks.
The background to Itô calculus is self-contained and the applications of Itô calculus
require little more than partial differentiation and ordinary integration.

Longer Master’s Courses

The discrete-time complete market trail (Chapters 1, 2, 5 and 6) has a number of
exciting computer simulations looking into dynamic asset pricing. Here one can
get away with very little mathematics, especially if one is willing to take a few
crucial results on trust. Chapter 1 establishes the basics of the one-period model,
shows how securities can be represented by vectors and matrices, and introduces
the concept of hedging. It also provides a simple context in which to explore the
MATLAB commands.

Chapter 2 introduces important financial notions such as returns, arbitrage and
state prices, and gives examples of asset pricing both in complete and incomplete
markets. Sections 2.1–2.4 are not essential for the complete market modelling and
can be skipped.

Chapter 5 introduces the multi-period binomial model for stock prices and com-
putes a dynamic hedging strategy that replicates a given option. We observe how
the risk-neutral probabilities arise within the multi-period framework and how the
option price can be expressed as a risk-neutral expectation. The calculations are
implemented in a spreadsheet.

Chapter 6 takes the binomial modelling one step further by introducing more/
shorter time periods. To achieve consistency across models one must make sure
that the mean and variance of annual returns match the empirical data, which brings
up the basic properties of mean and variance. At this stage it may be desirable
to revise the elementary concepts in Appendix B on probability. Once the model
is calibrated we realize that with many periods it is extremely time-consuming to
implement it in a spreadsheet. This difficulty is overcome by a simple MATLAB
program where we can use some of the matrix algebra of Chapters 1 and 2. Once
the model is up and running it is natural to explore the continuous-time limit; on a
computer one can consider hedging as frequently as every 10 minutes.

The discrete-time numerical explorations are a natural springboard to more
theoretical calculations on the continuous-time complete market trail (Chapters 6,
10 and 11). The numerical simulations show that the option price settles down as
the rehedging intervals shorten; the real challenge is to work out the limit with pen
and paper. This brings up the notions of the central limit theorem and continuous
random variables, in particular the normal distribution. The optional (hard) calcu-
lations needed to work out the risk-neutral mean and variance of log returns are
in Section 6.2.4; it is a good exercise in Taylor expansions and limits. The Black–
Scholes integral (Section 6.2.5) is easier and likely to be compulsory in most finance
courses. Chapter 6 demonstrates an important point: there are computations one
can do with pen and paper that even the fastest computers cannot perform. Here,
our productivity tool is standard calculus.
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The second half of Chapter 6 deals with the Poisson jump limit of the binomial
model. Some courses may wish to discuss the jumps there and then to show that
Brownian motion is not the only continuous-time limit logically possible. An al-
ternative is to leave jumps as an optional reading and stay on the Brownian motion
path moving straight to Chapter 10, where we introduce continuous-time Brownian
motion, Itô processes and most importantly Itô calculus.

Itô calculus is another great productivity tool, and it receives plenty of attention
in Chapters 10 and 11. In my experience it is hard to understand the Itô calculus, but
it is possible to get used to it and to apply it quickly and consistently; the main focus
is therefore on practice. There is a large number of worked examples in Chapter 10,
and the end-of-chapter exercises offer yet more opportunities to practise. With Itô
calculus under the belt, Section 11.2 explains the martingale approach to pricing;
it represents the condensed wisdom of continuous-time asset pricing. Section 11.2
draws heavily on the martingale properties discussed in Chapter 9; these can be
taken for granted if time is at a premium. For a good understanding one will also
need the notion of state variable, Markov process and information filtration, which
can be found in Chapter 8. Section 11.3 discusses the Girsanov Theorem (required
in Section 11.2) and its use in investment evaluation.

Section 11.4 extends Section 11.2 to several risky assets. Sections 11.3 and 11.4
are more advanced and can be skipped on a first read. Section 11.5 talks about
the relationship between martingales and partial differential equations, which is
central to most finance applications. Section 11.6 surveys numerical methods used
in continuous-time pricing. Chapter 12 is devoted to numerical solutions of PDEs
via finite-difference methods. The above trails on discrete and continuous-time
complete markets are suitable for a core Master’s course and can be covered in
approximately 40 hours of lectures and 20 hours of tutorials.

Complete market pricing is remarkable by the conspicuous absence of risk, which
is mathematically convenient but clearly at odds with reality. Risk is omnipresent
in financial markets, as documented by the fate of Long Term Capital Management.
Where there is risk one must, first of all, be able to measure it and only then one can
come up with a price. Hence the other major theme in this book is risk measurement
and asset pricing in incomplete markets (Chapters 3 and 4, and the first half of
Chapter 13).

Chapter 3 starts by explaining how risky investment opportunities are ranked by
the expected utility paradigm. Expected utility is often criticized for being ad hoc,
for using meaningless units, for its results being dependent on initial wealth, etc.,
in short, for being worlds apart from mean–variance analysis. Chapter 3 dispels
this dangerous myth. When correct measurement units are used all utility functions
look exactly the same for small risks, and their investment advice is consistent with
mean–variance analysis. When the risks are large and/or asymmetric the mean–
variance analysis may lead to investment decisions that are logically inconsistent,
whereas increasing utility functions will give consistent advice, albeit advice that
depends on the investor’s attitude to large risks. Formally, this is shown by ex-
amining the scaling properties of the HARA class of utility functions. We will
see that the risk–return trade-off of utility functions can be measured in terms of
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generalized Sharpe ratios similar to the standard Sharpe ratio of mean-to-standard
deviation.

Naturally, one wishes to achieve the best risk–return trade-off, which leads to the
maximization of expected utility. Chapter 4 discusses the numerical techniques that
are needed for this task because, sadly, closed-form formulae are not available in
incomplete markets. On the other hand, the algorithms are quite simple and intuitive.
The use of numerical techniques in Chapter 4 is not an attempt to be innovative at
all costs, rather, this chapter follows a trend that is increasingly apparent in financial
economics as it relies more and more on numerical analysis to provide answers to
pressing practical problems that are beyond the reach of closed-form solutions. As
these developments take root financial economics will soon need a large number
of professionals who are confident and competent users of numerical techniques.
Chapter 4 is an accessible introduction to the economic and mathematical issues of
numerical optimization that will prepare the reader for the road ahead. Chapters 3
and 4 are set in a one-period environment. Chapter 13 transports the reader into
a multi-period model where option hedging is risky. In Section 13.1 we describe
the optimal hedging strategy and the minimum hedging error, and compute these
quantities in a spreadsheet. Section 13.2 discusses the option pricing business in
incomplete markets. Section 13.3 then talks about the continuous-time limit, where
we will see that continuous hedging is not riskless, after all. Chapter 3, with small
digressions to Chapter 4, and the first two sections of Chapter 13 will need at least
15 hours of lectures and tutorials. Ideally, students should be given plenty of space
to experiment with the programs and to feed the programs with real market data.
This material is suitable for an elective Master’s course.

Shorter PhD Courses

The book offers opportunities for short courses targeted at doctoral students. In the
absence of introductory textbooks on dynamic programming one can use Chapter 13,
and particularly Section 13.4, to helicopter students into the issues of dynamic pro-
gramming, its advantages, challenges, principles, and the mathematical language.
Chapter 13 is the simplest multi-period optimization problem one will ever encounter
(quadratic target function, linear controls) and therefore it is an ideal pedagogical
tool. It is the only set-up that does not require iterative numerical optimization.
Dynamic programming highlights the importance of the information set, Markov
property and state variables covered in Chapter 8. To complement the dynamic pro-
gramming one may wish to introduce the martingale duality approach that appears
in Section 9.4. This naturally leads to the connection between pricing kernels and
the best investment opportunities (Hansen–Jagannathan duality) in Section 9.4.6
and via the extension theorem leads to the equilibrium price kernel restrictions used
in the diagnostics of asset-pricing models (Cochrane 2001). Chapter 7 gives an
introduction to the fast Fourier transform (FFT) in finance, and it will appeal mainly
to students specializing in derivative pricing. Chapter 7 offers the best of discrete
and continuous-time worlds, fast pricing in combination with rich structure (affine
models). Motivation for the FFT can be given quickly by referring to the numerical
examples in Chapter 6. Complex numbers are introduced with minimum fuss by
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appealing to their geometric properties. The FFT naturally leads to the continuous-
time limit, continuous Fourier transforms and characteristic functions, and it opens a
new world of opportunities for numerical and theoretical explorations. The practical
usefulness of the FFT can be seen, for example, in Section 13.3.2.

Exercises

The book is about empowering students and helping them to become confident users
of the techniques they have seen in the lectures. For this purpose each chapter is
accompanied by a tutorial that gives students an opportunity to practise the material
just covered. Exercises are an integral part of the book, and solutions are freely
available on the book’s website (see p. xiii). If the reader can solve the exercises,
then he or she can be pretty sure to have understood the theoretical concepts, and
vice versa.

Related Reading

Hull (2005) is a classical all-round finance text with accessible mathematics, plenty
of institutional details and many different types of financial instruments. There are
several intermediate texts that concentrate more on the valuation methodology and
less on the market practicalities, namely Baxter and Rennie (1996), Joshi (2003),
Neftci (1996), Pliska (1997), Shreve (2004a) and Luenberger (1998); Mathematical
Techniques in Finance belongs to this category.

Wilmott (1998) gives a practitioner’s perspective on financial engineering math-
ematics, biased towards partial differential equations, but with plenty of numeri-
cal examples and many important topics. Björk (1998), Duffie (1996), Hunt and
Kennedy (2000) and Shreve (2004b) represent advanced textbooks that start almost
directly with continuous-time stochastic processes and martingale pricing. Further
to this general list of textbooks each chapter provides references to sources and
suggested reading.





From the Preface to the First Edition

Modern finance overlaps with many fields of mathematics, in particular, probability
theory, linear algebra, calculus, partial differential equations, stochastic calculus,
numerical mathematics, and not least programming. The diversity of mathemat-
ical skills makes finance a very challenging subject, putting a lot of strain on its
prospective students. Mathematical Techniques in Finance offers an introduction
to the mathematical tools that are needed to price uncertain income streams such as
derivative securities. It is primarily intended as a textbook for Master’s in Finance
courses with a significant quantitative element, although it has also been popular
with Finance PhD students, and it has found its way onto the desks of financial
analysts.

This book is about the active and practical use of mathematics with the main
focus on three interrelated financial topics: asset pricing, portfolio allocation and
risk measurement. The book contains a mix of applications and theory working
together in a happy union; theory underpins the applications and the applications
illustrate the theory. Working out the exercises is more important than trying to
memorize the financial and mathematical theory contained in the text.
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1
The Simplest Model of Financial Markets

The main goal of the first chapter is to introduce the one-period finite state model
of financial markets with elementary financial concepts such as basis assets, fo-
cus assets, portfolio, Arrow–Debreu securities, hedging and replication. Along-
side the financial topics we will encounter mathematical tools—linear algebra and
matrices—essential for formulating and solving basic investment problems. The
chapter explains vector and matrix notation and important concepts such as linear
independence.

After reading the first two chapters you should understand the meaning of and be
able to solve questions of the following type.

Example 1.1 (replication of securities). Suppose that there is a risky security
(call it stock) with tomorrow’s value S = 3, 2 or 1 depending on the state of the
market tomorrow. The first state (first scenario) happens with probability 1

2 , the
second with probability 1

6 and the third with probability 1
3 . There is also a risk-free

security (bond) which pays 1 no matter what happens tomorrow. We are interested in
replicating two call options written on the stock, one with strike 1.5 and the second
with strike 1.

1. Find a portfolio of the stock, bond and the first call option that replicates the
second call option (so-called gamma hedging).

2. If the initial stock price is 2 and the risk-free rate of return is 5%, what is the
no-arbitrage price of the second option?

3. Find the portfolio of the bond and stock which is the best hedge to the first
option in terms of the expected squared replication error (so-called delta hedg-
ing).

This chapter is important for two reasons. Firstly, the one-period model of fi-
nancial markets is the main building block of a dynamic multi-period model which
will be discussed later and which represents the main tool of any financial analyst.
Secondly, matrices provide an effective way of describing the relationships among
several variables, random or deterministic, and as such they are used with great
advantage throughout the book.

1.1 One-Period Finite State Model

It is a statement of the obvious that the returns in financial markets are uncertain.
The question is how to model this uncertainty. The simplest model assumes that
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Table 1.1. Hypothetical scenarios.

Scenario #1 Scenario #2 Scenario #3 Scenario #4

Event probability 1
4 probability 1

6 probability 1
3 probability 1

4

Value of FTSE100 5000 4500 4200 4100
LIBOR rate 6.25 6.5 6.75 7.00
Weather Rain Rain Rain Rain and fog
Chelsea–Wimbledon 5:0 4:0 2:3 0:9
etc.

there are only two dates, which we will call today and tomorrow, but which could
equally well be called this week and next week, this year and next year, or now
and in 10 min. The essential feature of our two-date, one-period model is that no
investment decisions are taken between the two dates. One should be thinking of
a world which is at a standstill apart from at 12 noon each day when all economic
activity (work, consumption, trading, etc.) is carried out in a split second.

It is assumed that we do not know today what the market prices will be tomorrow,
in other words the state of tomorrow’s world is uncertain. However, we assume that
there is only a finite number of scenarios that can take place, each of which is known
today down to the smallest detail. One of these scenarios is drawn at random, using
a controlled experiment whereby the probability of each scenario being drawn is
known today. The result of the draw is made public at noon tomorrow and all events
take place as prescribed by the chosen scenario (see Table 1.1 for illustration).

Let us stop for a moment and reflect how realistic the finite state model is. First
of all, how many scenarios are necessary? In the above table we have four random
variables: the value of the FTSE index, the level of UK base interest rate, UK
weather and the result of the Chelsea–Wimbledon football game. Assuming that
each of these variables has five different outcomes and that any combination of
individual outcomes is possible we would require 54 = 625 different scenarios.
Given that in finance one usually works with two or three scenarios, 625 seems
more than sufficient. And yet if you realize that this only allows five values for
each random variable (only five different results of the football match!), then 625
scenarios do not appear overly exigent.

Next, do we know the probability of each of the 625 scenarios? Well, we might
have a subjective opinion on how much these probabilities are but since the weather,
football match or development in financial markets can hardly be thought of as
controlled random experiments we do not know what the objective probabilities
of those scenarios are. There is even a school of thought stating that objective
probabilities do not exist; see the notes at the end of the chapter.

Hence the finite state model departs from reality in two ways: firstly, with a small
number of scenarios (states of the world) it provides only a patchy coverage of the
actual outcomes, and secondly we do not know the objective probabilities of each
scenario, we only have our subjective opinion of how much they might be.
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1.2 Securities and Their Payoffs

Security is a legal entitlement to receive (or an obligation to pay) an amount of
money. A security is characterized by its known price today and its generally
uncertain payoff tomorrow. What constitutes the payoff depends to some extent on
the given security. For example, consider a model with just two scenarios and one
security, a share in publicly traded company TRADEWELL Inc. Let us assume that
the initial price of the share is 1, and tomorrow it can either increase to 1.2 or drop
to 0.9. Assume further that the shareholders will receive a dividend of 0.1 per share
tomorrow, no matter what happens to the share price.

The security payoff is the amount of money one receives after selling the security
tomorrow plus any additional payment such as the dividend, coupon or rebate
one is entitled to by virtue of holding the security. In our case the payoff of one
TRADEWELL share is 1.3 or 1 depending on the state of the world tomorrow.

Security price plays a dual role. The stock price today is just that—a price.
The stock price tomorrow is part of the stock’s uncertain payoff.

Throughout this chapter and for a large part of the next chapter we will ignore
today’s prices and will only talk about the security payoffs. We will come back
to pricing in Chapter 2, Section 2.5. Throughout this book we assume frictionless
trading, meaning that one can buy or sell any amount of any security at the market
price without transaction costs. This assumption is justified in liquid markets.

Example 1.2. Suppose S is the stock price at maturity. A call option with strike K

is a derivative security paying

S − K if S > K,

0 if S � K.

The payoffs of options in Example 1.1 are in Table 1.2.

1.3 Securities as Vectors

An n-tuple of real numbers is called an n-dimensional vector. For

x =

⎡
⎢⎢⎢⎣
x1

x2
...

xn

⎤
⎥⎥⎥⎦ and y =

⎡
⎢⎢⎢⎣
y1

y2
...

yn

⎤
⎥⎥⎥⎦

we write x, y ∈ R
n. Each n-dimensional vector refers to a point in n-dimensional

space. The above is a representation of such a point as a column vector, which is
nothing other than an n × 1 matrix, since it has n rows and 1 column. Of course,
the same point can be written as a row vector instead. Whether to use columns or
rows is a matter of personal taste, but it is important to be consistent.
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Table 1.2. Call option payoffs.

Probability 1
2

1
6

1
3

Stock 3 2 1
Call option #1 (K = 1.5) 1.5 0.5 0
Call option #2 (K = 1) 2 1 0

a3

a2
a1

a4

2

1

2

1

1 2 3
State 1

Stat
e 2

St
at

e 
3

Figure 1.1. Graphical representation of security payoffs.

Example 1.3. Consider the four securities from the introductory example. Let
us write the payoffs of each security in the three states (scenarios) as a three-
dimensional column vector:

a1 =
⎡
⎣1

1
1

⎤
⎦ , a2 =

⎡
⎣3

2
1

⎤
⎦ , a3 =

⎡
⎣1.5

0.5
0

⎤
⎦ , a4 =

⎡
⎣2

1
0

⎤
⎦ .

These securities are depicted graphically in Figure 1.1.
In MATLAB one would write

a1 = [1;1;1];
a2 = [3;2;1];
a3 = [1.5;0.5;0];
a4 = [2;1;0];

1.4 Operations on Securities

We can multiply vectors by a scalar. For any α ∈ R we define

αx =

⎡
⎢⎢⎢⎣
αx1
αx2
...

αxn

⎤
⎥⎥⎥⎦ .

This operation represents α units of security x.
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a3

−a4

a4

State 1

St
at

e 
2

St
at

e 
3 2a3 3a3

Figure 1.2. Different amounts of the same security have
payoffs that lie along a common direction.

Example 1.4. Two units of the third security will have the payoff

2a3 = 2

⎡
⎣1.5

0.5
0

⎤
⎦ =

⎡
⎣3

1
0

⎤
⎦ .

If we buy two units of the third security today, tomorrow we will collect 3 pounds
(dollars, euros) in the first scenario, 1 in the second scenario and nothing in the third
scenario. In MATLAB one would type

2*a3;

If we issued (wrote, sold) 1 unit of the fourth security, then our payoff tomorrow
would be

−a4 = −1

⎡
⎣2

1
0

⎤
⎦ =

⎡
⎣−2

−1
0

⎤
⎦ .

In other words, we would have to pay the holder of this security 2 in the first scenario,
1 in the second scenario and nothing in the third scenario. In MATLAB one types

-a4;

Various amounts of securities a3 and a4 are represented graphically in Figure 1.2.

One can also add vectors together:

x + y =

⎡
⎢⎢⎢⎣
x1 + y1

x2 + y2
...

xn + yn

⎤
⎥⎥⎥⎦ .

With this operation we can calculate portfolio payoffs. A portfolio is a combination
of existing securities, which tells us how many units of each security have to be
bought or sold to create the portfolio. Naturally, portfolio payoff is what the name
suggests: the payoff of the combination of securities. The word ‘portfolio’ is some-
times used as an abbreviation of ‘portfolio payoff’, creating a degree of ambiguity
in the terminology.
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a3
0.5

1.0

1 2 3

−a4

State 1

St
at

e 
2

2a3

2a3 − a4

a4

Figure 1.3. Payoff of the portfolio containing
two units of security a3 and minus one unit of security a4.

Example 1.5. A portfolio in which we hold two units of the first option and issue
one unit of the second option will have the payoff

2a3 − a4 =
⎡
⎣2 × 1.5 − 2

2 × 0.5 − 1
2 × 0 − 0

⎤
⎦ =

⎡
⎣1

0
0

⎤
⎦ .

Graphically, this situation is depicted in Figure 1.3. In MATLAB the portfolio
payoff is

2*a3-a4;

1.5 The Matrix as a Collection of Securities

Often we need to work with a collection of securities (vectors). It is then convenient
to stack the column vectors next to each other to form a matrix.

Example 1.6. The vectors a1, a2, a3, a4 from Example 1.3 form a 3 × 4 payoff
matrix, which we denote A,

A = [a1 a2 a3 a4
] =

⎡
⎣1 3 1.5 2

1 2 0.5 1
1 1 0 0

⎤
⎦ .

The market scenarios (states of the world) are in rows, securities are in columns. In
MATLAB

A = [a1 a2 a3 a4];

1.6 Transposition

Sometimes we need a row vector rather than a column vector. This is achieved by
transposition of a column vector:

x =

⎡
⎢⎢⎢⎣
x1

x2
...

xn

⎤
⎥⎥⎥⎦ , x∗ = [x1 x2 · · · xn

]
.
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Note that x∗ (transpose of x) is a 1 × n matrix. Conversely, transposition of a row
vector gives a column vector. Should we perform the transposition twice, we will
end up with the original vector:

(x∗)∗ = x.

Example 1.7.

a∗
1 = [1 1 1

]
,

a∗
2 = [3 2 1

]
,

a∗
3 = [1.5 0.5 0

]
,

a∗
4 = [2 1 0

]
.

In MATLAB transposition is achieved by attaching a prime to the matrix name. For
example, a∗

1 would be written as
a1’;

The vectors a∗
1 , a

∗
2 , a

∗
3 , a

∗
4 stacked under each other form a 4 × 3 matrix B

B =

⎡
⎢⎢⎣
a∗

1
a∗

2
a∗

3
a∗

4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1
3 2 1

1.5 0.5 0
2 1 0

⎤
⎥⎥⎦ , (1.1)

in MATLAB

B = [a1’;a2’;a3’;a4’] (1.2)

Matrix B from equation (1.1) is in fact the transpose of matrix A

B = A∗,

thus instead of (1.2) in MATLAB one would simply write

B = A’;

In general, we can have an m × n matrix M (denoted M ∈ R
m×n), where m is

the number of rows and n is the number of columns. The element in the ith row and
j th column is denoted Mij . The entire j th column is denoted M•j while the entire
ith row is denoted Mi•. According to our needs we can think of the matrix M as if
it were composed of m row vectors or n column vectors:

M =

⎡
⎢⎢⎢⎣
M11 M12 · · · M1n

M21 M22 · · · M2n
...

...
. . .

...

Mm1 Mm2 · · · Mmn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
M1•
M2•
...

Mm•

⎤
⎥⎥⎥⎦ = [M•1 M•2 · · · M•n

]
.
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The transpose of a matrix is obtained by changing the columns of the original matrix
into the rows of the transposed matrix:

M∗ =

⎡
⎢⎢⎢⎣
M11 M21 · · · Mm1

M12 M22 · · · Mm2
...

...
. . .

...

M1n M2n · · · Mmn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(M•1)

∗
(M•2)

∗
...

(M•m)∗

⎤
⎥⎥⎥⎦

= [(M1•)∗ (M2•)∗ · · · (Mn•)∗
]
.

Hence, for example, M∗
1• = (M•1)

∗ and M∗•1 = (M1•)∗, which in words says that
the first row of the transposed matrix is the transpose of the first column of the
original matrix.

Example 1.8. Suppose a 3 × 4 payoff matrix A is given. To extract the payoff of
the third security in all states, in MATLAB one would simply write

A(:,3);

On the other hand, if one wanted to know the payoff of all four securities in the first
market scenario, one would look at the row

A(1,:);

1.7 Matrix Multiplication and Portfolios

The basic building block of matrix multiplication is the multiplication of a row
vector by a column vector. Let A ∈ R

1×k and B ∈ R
k×1:

A = [a1 a2 · · · ak
]
, B =

⎡
⎢⎢⎢⎣
b1

b2
...

bk

⎤
⎥⎥⎥⎦ .

In this simple case the matrix multiplication AB is defined as follows:

AB = [a1 a2 · · · ak
]
⎡
⎢⎢⎢⎣
b1

b2
...

bk

⎤
⎥⎥⎥⎦ = a1b1 + a2b2 + · · · + akbk. (1.3)

Note that A is a 1 × k matrix, B is k × 1 matrix and the result is a 1 × 1 matrix. One
often thinks of a 1 × 1 matrix as a number.

Example 1.9. Suppose that we have a portfolio of the four securities from the
introductory example which consists of x1, x2, x3, x4 units of the first, second, third
and fourth security, respectively. In the third state the individual securities pay
1, 1, 0, 0 in turn. The payoff of the portfolio in the third state will be

x1 × 1 + x2 × 1 + x3 × 0 + x4 × 0.
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If we take

A3• = [1 1 0 0
]

and x =

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ ,

then the portfolio payoff can be written in matrix notation as A3•x.

In general one can multiply a matrix U (m×k) with a matrix V (k×n), regarding
the former as m row vectors in R

k and the latter as n column vectors in R
k . One

multiplies each of the m row vectors in U with each of the n column vectors in V

using the simple multiplication rule (1.3):

UV =

⎡
⎢⎢⎢⎣
U1•
U2•
...

Um•

⎤
⎥⎥⎥⎦[V•1 V•2 · · · V•n

] =

⎡
⎢⎢⎢⎣
U1•V•1 U1•V•2 · · · U1•V•n
U2•V•1 U2•V•2 · · · U2•V•n

...
...

. . .
...

Um•V•1 Um•V•2 · · · Um•V•n

⎤
⎥⎥⎥⎦ .

Facts.

• Matrix multiplication is not, in general, commutative:

UV �= VU.

• The result of matrix multiplication does not depend on the order in which
the multiplication is carried out (associativity property):

(UV )W = U(VW).

• Transposition reverses the order of multiplication!

(UV )∗ = V ∗U∗.

Example 1.10. Suppose we issue 2 units of call option #1 and 1 unit of call option
#2. To balance this position we will buy 2 units of the stock and borrow 1 unit of
the bond. What is the total exposure of this portfolio in the three scenarios?

Solution. The portfolio payoff in the first scenario is

[
1 3 1.5 2

]
⎡
⎢⎢⎣

−1
2

−2
−1

⎤
⎥⎥⎦ = 1 × (−1) + 3 × 2 + 1.5 × (−2) + 2 × (−1) = 0.

The payoff in the second state is

[
1 2 0.5 1

]
⎡
⎢⎢⎣

−1
2

−2
−1

⎤
⎥⎥⎦ = 1 × (−1) + 2 × 2 + 0.5 × (−2) + 1 × (−1) = 1
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To multiply matrix A with vector x
select the whole area H2:H4,
then type in the formula
=MMULT(A2:D4;F2:F5)
and press CTRL+SHIFT+ENTER

--

Figure 1.4. Matrix multiplication in Excel.

and the payoff in the third state will be

[
1 1 0 0

]
⎡
⎢⎢⎣

−1
2

−2
−1

⎤
⎥⎥⎦ = 1 × (−1) + 1 × 2 + 0 × (−2) + 0 × (−1) = 1.

The payoff in all three states together is now⎡
⎣1 3 1.5 2

1 2 0.5 1
1 1 0 0

⎤
⎦
⎡
⎢⎢⎣

−1
2

−2
−1

⎤
⎥⎥⎦ =

⎡
⎣0

1
1

⎤
⎦ .

Thus the portfolio payoff can be expressed using the payoff matrixA and the portfolio
vector

x∗ = [−1 2 −2 −1
]

as Ax. In MATLAB this reads A*x.

Example 1.11. You can perform the same matrix multiplication in Excel, using the
instructions in Figure 1.4.

1.8 Systems of Equations and Hedging

A system of m equations for n unknowns x1, . . . , xn,

A11x1 + A12x2 + · · · + A1nxn = b1,

A21x1 + A22x2 + · · · + A2nxn = b2,

...

Am1x1 + Am2x2 + · · · + Amnxn = bm,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1.4)

can be written in matrix form as⎡
⎢⎢⎢⎣
A11

A21
...

Am1

⎤
⎥⎥⎥⎦ x1 +

⎡
⎢⎢⎢⎣
A12

A22
...

Am2

⎤
⎥⎥⎥⎦ x2 + · · · +

⎡
⎢⎢⎢⎣
A1n

A2n
...

Amn

⎤
⎥⎥⎥⎦ xn =

⎡
⎢⎢⎢⎣
b1

b2
...

bm

⎤
⎥⎥⎥⎦
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or
A•1x1 + A•2x2 + · · · + A•nxn = b

or
Ax = b, (1.5)

where

x =

⎡
⎢⎢⎢⎣
x1

x2
...

xn

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣
b1

b2
...

bm

⎤
⎥⎥⎥⎦ .

One can think of the columns of A as being n securities in m states, x being a
portfolio of the n securities and b another security that we want to hedge. In such
a situation the securities in A are called basis assets and the security b is called a
focus asset. We know that Ax gives the payoff of the portfolio x of basis assets. To
solve a system of equations Ax = b therefore means finding a portfolio x of basis
assets that replicates (perfectly hedges) the focus asset b.

Typically, the basis assets are liquid securities with known prices, whereas the
focus asset b is an over-the-counter (OTC) security issued by an investment bank.
Such securities are issued between two parties and do not have a liquid secondary
market. The question is, what is a fair price of the OTC security?

By issuing the focus asset b the bank commits itself to pay different amounts of
money in different states of the world and thus it enters into a risky position. Hedging
is a simultaneous purchase of another portfolio that reduces this risk, and a perfect
hedge is a portfolio that eliminates the risk completely. Suppose that portfolio x is
a perfect hedge to the focus asset b. The bank will issue asset b (promise to pay
bi in state i tomorrow) and simultaneously purchase the replicating portfolio x of
basis assets.

How much will the bank charge for issuing the OTC security? To break even,
it will charge exactly the cost of the replicating portfolio (plus a fee to cover its
overheads). Tomorrow, when the payment of b becomes due it will liquidate the
hedging portfolio x. Since x was a perfect hedge, the payoff of the hedging portfolio
Ax will exactly match the liability b in each state of the world. Hence the bank will
not have incurred any risk in this operation.

Example 1.12. Let us answer parts (1) and (2) of the introductory Example 1.1. To
replicate the fourth security we need to find a portfolio

x∗ = [x1 x2 x3
]

such that [
A•1 A•2 A•3

]
x = A•4.

Thus we are solving

1 × x1

1 × x1

1 × x1

+
+
+

3 × x2

2 × x2

1 × x2

+
+
+

1.5 × x3

0.5 × x3

0 × x3

=
=
=

2,
1,
0.
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After a short manipulation we find that x1 = −1, x2 = 1, x3 = 0 is a unique
solution. In MATLAB one can obtain the replicating portfolio by typing

x = inv(A(:,1:3))*A(:,4);

Part (2) assumes that the risk-free security costs 1/1.05 today, whereas the stock
costs 2. The value of the replicating portfolio is therefore

x1

1.05
+ 2x2 = −1

1.05
+ 2 = 1.048.

This is how much the bank would charge for the second call option.

1.8.1 Complications

In the preceding example the hedging portfolio x[
A•1
bond

A•2
stock

A•3
option #1

]
x = A•4

option #2
(1.6)

is unique and it can be expressed using an inverse matrix

x = [A•1 A•2 A•3
]−1

A•4.

However, if we swap the two call options around,[
A•1
bond

A•2
stock

A•4
option #2

]
x = A•3

option #1
, (1.7)

we will find that (1.7) suddenly does not have a solution, and, what is more, the
matrix [

A•1 A•2 A•4
]

is not invertible; this can be seen by typing inv(A(:,[1 2 4])).
To add to the confusion, the system[

A•1 A•2
]
x = A•4 (1.8)

has a unique solution (x1 = −1, x2 = 1) even though the inverse of
[
A•1 A•2

]
does not exist; try inv(A(:,1:2)). At the same time the system[

A•1 A•2
]
x = A•3 (1.9)

does not have a solution.
It should be stressed that the hedging problems (1.6)–(1.9) arise naturally; these

are not special cases that you will never see in practice. Clearly, m = n is neither
necessary nor sufficient to find a solution and the same holds for the existence or non-
existence of the inverse matrix. The next few sections explain how one solves the
hedging problem in full generality. Sections 1.9 and 1.10 provide the terminology,
Sections 1.11–1.14 discuss the special case when A has an inverse, and Section 2.1
solves the general case.

1.9 Linear Independence and Redundant Securities

Let the column vectors A•1, A•2, . . . , A•n ∈ R
m represent n securities in m scenar-

ios, in the sense discussed above.
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Definition 1.13. We say that vectors (securities) A•1, A•2, . . . , A•n are linearly
independent if the only solution to

A•1x1 + A•2x2 + · · · + A•nxn = 0

is the trivial portfolio

x1 = 0, x2 = 0, . . . , xn = 0.

Mathematicians call the sum A•1x1 +A•2x2 +· · ·+A•nxn a linear combination
of vectors A•1, A•2, . . . , A•n and the numbers x1, . . . , xn are coefficients of the
linear combination. To us x1, . . . , xn represent numbers of units of each security in
a portfolio and the linear combination represents the portfolio payoff.

The meaning of linear independence is best understood if we look at a situation
where A•1, A•2, . . . , A•n are not linearly independent. From the definition it means
that there is a linear combination where at least one of the coefficients x1, . . . , xn is
non-zero and

A•1x1 + A•2x2 + · · · + A•nxn = 0. (1.10)

Without loss of generality we can assume that x1 �= 0. One can then solve (1.10)
for A•1:

A•1 = −
(
A•2

x2

x1
+ · · · + A•n

xn

x1

)
.

The last equality means that A•1 is a linear combination of vectors A•2, . . . , A•n
with coefficients −x2/x1, . . . ,−xn/x1. In conclusion, if the vectors A•1, . . . , A•n
are not linearly independent, then at least one of them can be expressed as a linear
combination of the remaining n−1 vectors. And vice versa, if vectors A•1, . . . , A•n
are linearly independent, then none of them can be expressed as a linear combination
of the remaining n − 1 vectors.

Securities that are linear combinations of other securities are called redundant
and the portfolio which achieves the same payoff as that of a redundant security is
called a replicating portfolio. Redundant securities do not add anything new to the
market because their payoff can be synthesized from the payoff of the remaining
securities; instead of trading a redundant security we might equally well trade the
replicating portfolio with the same result.

The practical significance of linearly independent securities, on the other hand, is
that each additional linearly independent security has a payoff previously unavailable
in the market. The marketed subspace is formed by payoffs of all possible portfolios
(linear combinations) of basis assets and is denoted Span(A•1, A•2, . . . , A•n). As
was mentioned above each linearly independent security adds something new to
the market—it adds one extra dimension to the marketed subspace. Consequently,
the maximum number of linearly independent securities in the marketed subspace
is called the dimension of the marketed subspace. The definition of dimension is
made meaningful by the following theorem.

Theorem 1.14 (Dimensionality Theorem). Suppose A•1, A•2, . . . , A•n are n lin-
early independent vectors. Suppose

B•1, B•2, . . . , B•k ∈ Span(A•1, A•2, . . . , A•n)
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are linearly independent. Then

Span(B•1, B•2, . . . , B•k) = Span(A•1, A•2, . . . , A•n)
if and only if k = n.

Proof. See website.

We say that the market is complete if the marketed subspace

Span(A•1, A•2, . . . , A•n)
includes all possible payoffs over the m states, that is, if it contains all possible
m-dimensional vectors. A complete market means that whatever distribution of
wealth in the m market scenarios one may think of, it can always be achieved as
a payoff from a portfolio of marketed securities. Since the dimension of R

m is m,
another way of saying that the market is complete is to claim that there are m linearly
independent basis securities or that the dimension of the marketed subspace is m.

1.10 The Structure of the Marketed Subspace

There is a simple procedure for finding out the dimension of the marketed subspace,
based on the following two facts, which are a direct consequence of the Dimension-
ality Theorem.

• Suppose that A•1, A•2, . . . , A•k are linearly independent. For the next
securityA•k+1 there are only two possibilities. EitherA•1, A•2, . . . , A•k+1
are linearly independent, orA•k+1 is redundant, that is, there is a replicating
portfolio

x∗ = [x1 x2 · · · xk
]

such that
A•k+1 = A•1x1 + A•2x2 + · · · + A•kxk.

• With m states there cannot be more than m linearly independent securities.

This allows us to sort basis assets into two groups: in one group we have linearly
independent securities that span the whole marketed subspace and in the other group
we have redundant securities. There is more than one way of splitting the basis assets
into these two groups, and the same security may appear once as linearly independent
and another time as redundant—there is no contradiction in this. However, the
number of linearly independent securities in the first group is always the same, and
we know that it is equal to the dimension of the marketed subspace.

Example 1.15. Let us split the four securities from the introductory example into
linearly independent and redundant securities.

1. We will start with the first security

A•1 =
⎡
⎣1

1
1

⎤
⎦

and place it among the linearly independent securities.
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2. For

A•2 =
⎡
⎣3

2
1

⎤
⎦

there are now two possibilities: either

(a) it is redundant, which means there is x1 such that A•2 = x1A•1, or

(b) A•1, A•2 are linearly independent.
Let us examine (a), that is, try to find x1 so that A•2 = x1A•1 holds⎡

⎣3
2
1

⎤
⎦ = x1

⎡
⎣1

1
1

⎤
⎦ =

⎡
⎣x1

x1

x1

⎤
⎦ .

This implies that x1 = 3 and x1 = 2 and x1 = 1, which is impossible.
Since (a) is impossible (b) must hold, therefore we add the second secu-
rity to the basket of linearly independent securities, already containing
the first security.

3. Let us examine the third security:

A•3 =
⎡
⎣1.5

0.5
0

⎤
⎦ .

Either

(a) A•3 is redundant, A•3 = x1A•1 + x2A•2, or

(b) A•1, A•2, A•3 are linearly independent.
Possibility (a) would imply⎡

⎣1.5
0.5
0

⎤
⎦ = x1

⎡
⎣1

1
1

⎤
⎦+ x2

⎡
⎣3

2
1

⎤
⎦ =

⎡
⎣x1 + 3x2

x1 + 2x2

x1 + x2

⎤
⎦ .

Subtracting the third equation from the second equation we have 0.5 =
x2, whereas the first equation minus the second equation gives 1 = x2
and these two statements are contradictory. Since (a) is not possible
the securities A•1, A•2, A•3 are linearly independent and therefore A•3
goes into the basket with securities one and two.

4. Finally, we examine the fourth security. We could go through the process
outlined above, but there is a faster way. We have three states, hence we know
that there cannot be more than three linearly independent securities. And we
already have three linearly independent securities, namely A•1, A•2 and A•3.
Since A•4 cannot be independent it has to be redundant.
Note. Had we started with A•4 and then continued with A•3, A•2 and A•1,
we would have found that A•4, A•3, A•2 are linearly independent and that
A•1 is then redundant.
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We can conclude that the market containing securities A•1, A•2, A•3 and A•4 is
complete, since with three states three linearly independent securities are (necessary
and) sufficient to span the whole market.

Recall that we can stack the securities into a matrix A = [A•1 A•2 · · · A•n
]

and that the portfolio payoff can be written as A•1x1 +A•2x2 +· · ·+A•nxn = Ax.
Mathematicians call the maximum number of linearly independent columns of a
matrix its rank and denote it r(A). For us r(A) is nothing other than the dimension
of the marketed subspace.

Facts.

• The rank of A∗A is the same as the rank of A.
• r(AB) � min(r(A), r(B)).
• The ranks of A and A∗ are the same—it does not matter whether we look

at columns or rows.
• For the m × n matrix A it is always true that r(A) � min(m, n).

Proof. Readers with a particular interest in linear algebra can find the proofs on
the website.

When r(A) = min(m, n) we say that A has full rank. Square matrices with full
rank are called regular (non-singular, invertible).

1.11 The Identity Matrix and Arrow–Debreu Securities

A square matrix of the form ⎡
⎢⎢⎢⎢⎣

1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

is called the identity matrix and is denoted I (or sometimes In to denote the dimen-
sion). The identity matrix is closely linked to Arrow–Debreu securities.

There are as manyArrow–Debreu securities (also called pure securities or elemen-
tary state securities) as there are states of the world. The Arrow–Debreu security
for state j (denoted ej ) pays 1 in state j and 0 in all other states. Ordering all
Arrow–Debreu securities into a matrix

[
e1 e2 · · · em

]
gives⎡

⎢⎢⎢⎢⎣
1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ ,

an m × m identity matrix.
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1.12 Matrix Inverse

Recall that a square matrix with full rank is called invertible (regular, non-singular).

• For every square matrix A with full rank (and only for such matrices!)
there is a unique matrix B such that

AB = BA = I.

The matrix B is called the inverse to matrix A and it is more commonly
denoted A−1. Thus

AA−1 = A−1A = I.

• When C and D are invertible, then CD is also invertible and (CD)−1 =
D−1C−1.

• Trivially, (A−1)−1 = A.

1.13 Inverse Matrix and Replicating Portfolios

Remember that a matrix A must be square with linearly independent columns to
have an inverse. Throughout this book we will assume that an efficient procedure
for computation of A−1 is available. In MATLAB this procedure is called inv().
In this section we are interested in the interpretation of the inverse matrix. Let us
begin with the definition:

AA−1 = I. (1.11)

If we divide the matrices A−1 and I into n columns, the matrix equality (1.11) is
split into n systems of the form

AA−1
•j = ej ,

where A−1
•j is the j th column of the inverse matrix and ej is the j th column of the

identity matrix (see also Section 1.11), j = 1, 2, . . . , n.
Thus, for example, the solution x of the system

Ax =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦

gives us the first column of the inverse matrix.
Again, if we think of A as containing payoffs of n basis assets in n states, then

solving
Ax = ej

means finding a portfolio x that replicates the Arrow–Debreu security for state
j . Existence of the inverse matrix therefore requires existence of the replicating
portfolio for each Arrow–Debreu security and this explains why r(A) must equal n
for the inverse to exist.
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The argument goes as follows. For the inverse to exist each elementary state
security must lie in the marketed subspace formed by the basis assets (columns of
matrix A). But the elementary state securities are linearly independent and if they
all belong to the marketed subspace, that means that the dimension of the marketed
subspace is n. We know from Section 1.9 that the dimension of the marketed
subspace is equal to r(A). Thus for an inverse to exist we must have r(A) = n.

Example 1.16. Find the inverse of

A =
⎡
⎣1 3 1.5

1 2 0.5
1 1 0

⎤
⎦ .

Solution. In MATLAB we would type

inv(A(:,1:3));

which gives

A−1 =
⎡
⎣ 1 −3 3

−1 3 −2
2 −4 2

⎤
⎦ .

To find the inverse by hand one must solve n systems of the type Ax = I•i for
i = 1, 2, . . . , n. This is best performed by Gaussian elimination, but there are
other possibilities, for example, the Cramer rule applied to Ax = I•i will lead to
the computation of the adjoint matrix (A−1 = adjA/ det A). This book does not
teach how to solve systems of linear equations by hand; the reader should consult the
references at the end of the chapter for a detailed exposition of Gaussian elimination,
the Cramer rule and related topics.

Just for illustration let us solve Ax = I•1, that is,

x1

x1

x1

+
+
+

3x2

2x2

x2

+
+
+

1.5x3

0.5x3

=
=
=

1,
0,
0,

(1a)
(2a)
(3a)

by Gaussian elimination. In the first instance we subtract Equation (1a) from both
Equation (2a) and Equation (3a),

x1 +
−
−

3x2

x2

2x2

+
−
−

1.5x3

x3

1.5x3

=
=
=

1,
−1,
−1.

(1b)
(2b)
(3b)

Now subtract 2 × Equation (2b) from Equation (3b),

x1 +
−

3x2

x2

+
−

1.5x3

x3

0.5x3

=
=
=

1,
−1,

1.

(1c)
(2c)
(3c)

Equation (3c) gives x3 = 2, from Equation (2c) we then have x2 = −1 and finally
Equation (1c) gives x1 = 1. Note that x represents the first column of A−1 as
expected.

Excel commands for computing an inverse matrix are described in Figure 1.5.
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To calculate the inverse of  matrix A
select the whole area E2:G4,
then type in the formula
=MINVERSE(A2:D4)
and press CTRL+SHIFT+ENTER

Figure 1.5. Computation of A−1 in Excel.

1.14 Complete Market Hedging Formula

The inverse of the payoff matrix can be used to compute replicating portfolios.
Recall that the hedging equation reads

Ax = b.

If A−1 exists, we can apply it on both sides to obtain x:

A−1Ax = x = A−1b.

Complete market without redundant basis assets. Suppose that A ∈ R
m×n

represents the payoff of n securities in m states. If A represents a complete
market without redundant assets, then r(A) = m = n, which means that A is a
square matrix with full rank and therefore has an inverse A−1. In this case any
focus asset b can be hedged perfectly; there is x such that Ax = b. The hedging
portfolio x is unique and is given by formula

x = A−1b. (1.12)

Hedging formula (1.12) has a simple financial interpretation. Recall that
the columns of A−1 represent portfolio weights that perfectly replicate Arrow–
Debreu state securities. The focus asset b is a combination of Arrow–Debreu
securities with exactly bi units of the ith state security. Therefore, the hedging
portfolio x is a linear combination of columns in A−1; x = A−1b.

Example 1.17. Let us take part (1) of the introductory Example 1.1. We have

A =
⎡
⎣1 3 1.5

1 2 0.5
1 1 0

⎤
⎦ and b =

⎡
⎣2

1
0

⎤
⎦ .

We have calculated A−1 in Example 1.16:

A−1 =
⎡
⎣ 1 −3 3

−1 3 −2
2 −4 2

⎤
⎦ .
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To calculate the replicating portfolio
select the whole area G2:G4,
then type in the formula
=MMULT(MINVERSE(A2:C4), E2:E4)
and press CTRL+SHIFT+ENTER

Figure 1.6. Solution of the hedging problem using A−1.

The replicating portfolio is therefore

x = A−1b =
⎡
⎣ 1 −3 3

−1 3 −2
2 −4 2

⎤
⎦
⎡
⎣2

1
0

⎤
⎦ =

⎡
⎣−1

1
0

⎤
⎦ . (1.13)

Excel commands for computing expression (1.13) are given in Figure 1.6.

1.14.1 To Invert or not to Invert?

Note that we have already found the same x in Example 1.12, that time without
computing A−1. Which of the two computations would we use in practice?

The main difference between Example 1.12 and Example 1.17 is that the former
solves Ax = b for one specific focus asset b; if we changed b, we would have to redo
the whole calculation from scratch. In contrast, once we know A−1 in Example 1.17
it is easy to recalculate the perfect hedge for any focus asset b; we just perform one
matrix multiplication A−1b. It is also true that solving Ax = b for one fixed value
of b (which is what we have done in Example 1.12) is about three times faster than
computing the entire inverse matrix A−1. Thus the conclusion is clear. If we are
required to solve the hedging problem just once, it is quicker not to use the inverse
matrix: a MATLAB command to achieve this is x = A\b. However, if we have to
solve many hedging problems with the same set of basis assets, then it will be far
more economical to compute A−1 once at the beginning and then recycle it using
the formula

x = A−1b. (1.14)

MATLAB code to perform this task reads Ainv = inv(A), x = Ainv ∗ b. This
will be particularly useful in dynamic option replication of Chapter 5, where the
number of one-period hedging problems is large.

1.15 Summary

• The simplest model of financial markets has two periods and a finite number
of states. While today’s prices of all securities are known, tomorrow’s security
payoffs are uncertain. Nevertheless, this uncertainty is rather organized. The
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security payoffs must follow one of the finite number of scenarios and the con-
tents of each of these scenarios is known today together with the probability
of each scenario.

• If m is the number of scenarios (states of the world), then the payoff of each
security can be represented as an m-dimensional vector.

• The payoff of n securities is captured in an m × n payoff matrix A.
• A portfolio is a combination of existing securities. If we write down the

number of units of each security in the portfolio into an n-dimensional port-
folio vector x, then the portfolio payoff can be calculated from the matrix
multiplication Ax.

• An asset whose payoff can be obtained as a combination of payoffs of other
securities is called redundant. The portfolio which has the same payoff as a
redundant asset is called a replicating portfolio.

• Any system of linear equations can be written down as a matrix equality and
vice versa; see equations (1.4) and (1.5).

• A hedging problem with m states of the world, n basis assets and a focus asset
b can be expressed as a system of m linear equations for n unknowns x, with
right-hand side b:

Ax = b.

The m×n system matrix A contains payoffs of the basis assets as its columns.
The solution x of the system, if it exists, represents a portfolio of basis assets
which replicates the focus asset b.

• A matrix A has an inverse if and only if it is square with full rank. The inverse,
if it exists, is denoted A−1 and has the property,

AA−1 = A−1A = I.

• If A is a payoff matrix of basis assets, then the individual columns of A−1

represent replicating portfolios to individual Arrow–Debreu securities.
• In a complete market one can hedge perfectly any focus asset b, and when

there are no redundant basis assets one can express the perfect hedge as

x = A−1b.

Here one can interpret x as a linear combination of portfolios that perfectly
replicate Arrow–Debreu securities.

1.16 Notes

Anton (2000) and Grossman (1994) are comprehensive guides to matrix calculations
and to the underlying theory.

It is important to bear in mind that objective probabilities are in fact our subjective
guess of how likely the different states are; in reality, we cannot hope that someone
behind the scenes is flipping a coin or rolling dice to generate states according to a
particular (random) formula. The classic statement of this is by de Finetti (1974a):
‘[objective] probability does not exist’. One can use probabilistic models with great
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advantage but every user has to supply his or her own ‘objective’ probabilities and
each user is solely responsible for the actions he or she takes based on such models.

1.17 Exercises

Exercise 1.1. Which of the following is true of matrix multiplication of matrices A

and B?

(a) It can be performed only if A and B are square matrices.
(b) Each entry of the result cij is the product of aij and bij .
(c) AB = BA.
(d) It can be performed only if the number of columns of A is equal to the number

of rows B.

Exercise 1.2. The result of the matrix multiplication

[
1
1

] [
1 2 3

]
is

(a) not defined;
(b)

[
6
]
;

(c)

[
1 2 3
1 2 3

]
;

(d) none of the above.

Exercise 1.3. Which of the following is true of matrices A and B if AB is a column
vector?

(a) B is a column vector.
(b) A is a row vector.
(c) A and B are square matrices.
(d) The number of rows in A must equal the number of columns in B.

Exercise 1.4. The rank of the n × n identity matrix is

(a) 0;
(b) 1;
(c) n2;
(d) none of the above.

Exercise 1.5. The rank of the m × n matrix is

(a) equal to max(m, n);
(b) only defined when m = n, in which case it is equal to m;
(c) not greater than min(m, n);
(d) none of the above.

Exercise 1.6. The last column of a transposed matrix is the same as

(a) the first column of the original matrix;
(b) the last row of the original matrix, but transposed;
(c) the first row of the original matrix, but transposed;
(d) none of the above.
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Exercise 1.7. Let A be an m × n matrix representing the payoff of n securities in
m states of the world. The assertion ‘market is complete’ means that

(a) m � n;
(b) n � m;
(c) r(A) = m;
(d) r(A) = n.

Exercise 1.8. When there are more securities than states of the world, then
(a) some securities are redundant;
(b) markets are complete;
(c) markets are incomplete;
(d) none of the above.

Exercise 1.9. The number of redundant securities is equal to
(a) m − min(m, n);
(b) m − r(A);
(c) n − r(A);
(d) none of the above.

Exercise 1.10. If A has full rank, this means that
(a) markets are complete;
(b) there are no redundant securities;
(c) sometimes (a), sometimes (b) and sometimes both;
(d) none of the above.

Exercise 1.11 (terminal wealth). An investor with initial wealth £10 000 chooses
between a risk-free rate of return of 2% and a risky security with rate of return
−20%, −10%, −5%, 0%, 5%, 10%, 20%, 30% with probability 0.05, 0.10, 0.15,
0.20, 0.20, 0.15, 0.10, 0.05, respectively. If α denotes the proportion of initial
wealth invested in the risky asset, explain how one can express in matrix notation

(a) terminal wealth;
(b) expected terminal wealth.

Exercise 1.12 (redundant securities). In this question anm×nmatrixA represents
the payoff of n securities in m states. In each of the markets below divide securities
into linearly independent and redundant:

(a) A =
⎡
⎣2 1 1

1 1 0
0 1 −1

⎤
⎦;

(b) A =
⎡
⎣2 1 0 3 1

1 1 1 2 1
0 1 2 1 0

⎤
⎦;

(c) A =
⎡
⎣2 0

1 1
0 2

⎤
⎦.
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Exercise 1.13 (quadratic forms). Define a symmetric 2 × 2 matrix

H =
[
h11 h12

h12 h22

]
and a 2 × 1 vector

x =
[
x1

x2

]
.

(a) Perform the matrix multiplication x∗Hx. The result of the multiplication is
a quadratic form in x.

(b) Consider a quadratic form x2
1 − 6x1x2 + 2x2

2 . Find a symmetric matrix H

such that
x2

1 − 6x1x2 + 2x2
2 = x∗Hx.

(c) Write the expression

∂2f

∂x2 (x − x0)
2 + 2

∂2f

∂x∂y
(x − x0)(y − y0) + ∂2f

∂y2 (y − y0)
2

in matrix form.

Exercise 1.14 (probability matrices). A probability matrix is a square matrix hav-
ing two properties: (i) every component is non-negative and (ii) the sum of elements
in each row is 1. The following are probability matrices:

P =
⎡
⎢⎣

1
3

1
3

1
3

1
4

1
2

1
4

0 0 1

⎤
⎥⎦ and Q =

⎡
⎢⎣

1
6

1
6

2
3

0 1 0
1
5

1
5

3
5

⎤
⎥⎦ .

(a) Show that PQ is a probability matrix.
(b) Show that for any pair of probability matrices P and Q the product PQ is a

probability matrix.



2
Arbitrage and Pricing in

the One-Period Model

2.1 Hedging with Redundant Securities and Incomplete Market

We have seen in the previous chapter that in a complete market without redundant
assets any focus asset can be hedged perfectly and the replicating portfolio is given
by

x = A−1b.

In general, the market need not be complete, and at the same time redundant basis
assets may be present.

We know that in the general case we can divide the securities into linearly inde-
pendent and redundant:

A = A1︸︷︷︸
r(A) columns

| A2︸︷︷︸
n−r(A) columns

,

r(A1) = r(A).

Because the redundant securities do not add anything new to the marketed subspace,
the existence of a solution is entirely determined by the relative position of linearly
independent securities A1 and the focus asset b. If b is redundant (and this can hap-
pen even if the market A1 is not complete), then we have a solution. Mathematically,
this case is described by

r(A1) = r(A1 | b). (2.1)

In particular, when market A is complete, then r(A) = m and A1 is a square
m×m matrix with full rank and then necessarily (2.1) is satisfied for any b, because
r(A1 | b) � min(m,m + 1) = m.

In an incomplete market it will often happen that the assets in A1 and asset b are
linearly independent,

r(A1) < r(A1 | b),
in which case a perfect hedge does not exist.

While redundant basis assets do not affect the existence or non-existence of a
perfect hedge, every redundant basis asset introduces one free parameter into the
hedging portfolio. Thus the number of solutions, if at least one solution exists,
depends purely on the number of redundant securities n − r(A).
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The four combinations (complete, incomplete) × (no redundant basis assets,
redundant basis assets) are described below and summarized in Table 2.1.

2.1.1 r(A) = m = n

(Complete Market, Basis Assets Are Linearly Independent)

Matrix A is square and has full rank, therefore the inverse exists. Applying A−1

from the left,

A−1Ax = A−1b,

x = A−1b.

A−1b is the unique solution.

2.1.2 r(A) = m < n

(Market Is Complete, but There Are n − m Redundant Basis Assets)

Then A can be partitioned into linearly independent and redundant assets, that is,
it can be divided into two matrices A1, A2 with m and n − m columns such that
r(A1) = m and there is an m× (n−m) matrix C of replicating portfolios such that
A2 = A1C. The vector x too must be partitioned correspondingly,

x =
[
x(1)

x(2)

]
,

where x(1) denotes the portfolio of linearly independent basis assets and x(2) is the
portfolio of redundant basis assets. Now the system can be written as

A1x
(1) + A2x

(2) = b.

Since A2 contains redundant assets, we can express assets in A2 as portfolios of
linearly independent assets in A1

A1x
(1) + A1Cx(2) = b,

and factor out A1

A1(x
(1) + Cx(2)) = b. (2.2)

Matrix A1 is square with full rank, therefore it is invertible. Multiplying both sides
of (2.2) by A−1

1 we have
x(1) + Cx(2) = A−1

1 b. (2.3)

Now we can choose the portfolio of redundant basis assets x(2) arbitrarily and
calculate the required portfolio of linearly independent basis assets from (2.3):

x(1) = A−1
1 b − Cx(2).

Since we have n − m redundant basis assets, the vector x(2) has n − m entries and
therefore the solution has n − m free parameters.

Example 2.1. See Example 2.13 for a solution of a full rank 2 × 3 system of
equations.
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2.1.3 r(A) = n < m

(Market Is Incomplete, all Basis Assets Are Linearly Independent)

Multiplying by A∗ from the left we have

A∗Ax = A∗b. (2.4)

Matrix A∗A is square n × n and it has rank n, therefore it is invertible. Now apply
(A∗A)−1 from the left in (2.4)

(A∗A)−1A∗Ax = (A∗A)−1A∗b,
x̂ = (A∗A)−1A∗b.

}
(2.5)

This is a solution to the modified equation (2.4). To verify whether x̂ solves the
original equation, substitute x̂ back into Ax = b; this gives us the following condi-
tion:

A (A∗A)−1A∗b︸ ︷︷ ︸
x̂

= b. (2.6)

If (2.6) is satisfied, then b is a redundant security and we have a unique perfect hedge
x = (A∗A)−1A∗b. Otherwise, there is no solution (b and basis assets are linearly
independent).

Example 2.2. Let us see whether we can find a perfect hedge in part (3) of Exam-
ple 1.1:

A = [A•1 A•2
] =

⎡
⎣1 3

1 2
1 1

⎤
⎦ , x =

[
x1

x2

]
, b = A•3 =

⎡
⎣1.5

0.5
0

⎤
⎦ .

The two securities in A are linearly independent and hence the unique candidate for
the perfect hedging portfolio is given by equation (2.5):

x̂ = (A∗A)−1A∗b. (2.7)

In MATLAB one would type

A = [1 3;1 2;1 1];

b = [1.5;0.5;0];

xhat = inv(A’*A)*A’*b;

which gives

x̂ =
[
− 2.5

3

0.75

]
.

It remains to verify whether this solves the original problem:

Ax̂ =
⎡
⎢⎣

4.25
3
2
3

0.25
3

⎤
⎥⎦ �=

⎡
⎣1.5

0.5
0

⎤
⎦ = b. (2.8)

In this case b is a non-redundant security and a perfect hedge does not exist.
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When b is changed to

b = A•4 =
⎡
⎣2

1
0

⎤
⎦ ,

then the same procedure yields

x̂ =
[−1

1

]
and Ax̂ = b,

which means that this time b can be hedged perfectly, even though the market is not
complete.

2.1.4 r(A) < m, r(A) < n

(Market Is Incomplete, There Are n − r(A) Redundant Assets)

As in Section 2.1.2 the original problem boils down to

A1(x
(1) + Cx(2)) = b. (2.9)

Matrix A1 is not square but it has full rank; we can therefore use the trick from
Section 2.1.3, that is, multiply by A∗

1 and then by (A∗
1A1)

−1:

x(1) + Cx(2) = (A∗
1A1)

−1A∗
1b. (2.10)

The portfolio of redundant assets x(2) can be chosen arbitrarily.
As in Section 2.1.3 we need to verify that this solution indeed solves the original

problem (2.9). On substituting (2.10) into (2.9) we obtain the condition,

A1(A
∗
1A1)

−1A∗
1b = b. (2.11)

In conclusion, if condition (2.11) is satisfied, then b can be perfectly hedged
and the replicating portfolio can be constructed in infinitely many ways according
to (2.10) with x(2) arbitrary. Mathematically, there are infinitely many solutions
with n − r(A) free parameters. If the condition (2.11) is violated, then there is no
solution—the focus asset b is not in the marketed subspace generated by the basis
assets in matrix A.

Example 2.3. Consider a hedging problem with

A =
⎡
⎣1 3 2

1 2 1
1 1 0

⎤
⎦ , b =

⎡
⎣1.5

0.5
0

⎤
⎦ .

Then the third basis asset is redundant, namely, we have

A1 =
⎡
⎣1 3

1 2
1 1

⎤
⎦ , A2 =

⎡
⎣2

1
0

⎤
⎦ , C =

[−1
1

]
, A2 = A1C,

x(1) =
[
x1

x2

]
, x(2) = [x3

]
.
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Table 2.1. General solution of the hedging problem with two special cases.

r(A) = r(A | b) r(A) < r(A | b)
b is redundant b is non-redundant

r(A) � m

general case

A1(A
∗
1A1)

−1A1b = b

x(1) + Cx(2) = (A∗
1A1)

−1A1b

x(2) arbitrary

A1(A
∗
1A1)

−1A1b �= b

no solution of Ax = b

r(A) = m = n

complete market
no redundant securities

x = A−1b cannot happen

r(A) = n < m

incomplete market
no redundant securities

A(A∗A)−1Ab = b

x = (A∗A)−1Ab

A(A∗A)−1Ab �= b

no solution of Ax = b

The solution exists if and only if A1(A
∗
1A1)

−1A∗
1b = b. We have checked this con-

dition in Example 2.2, equation (2.8), and we know that it is not satisfied. Therefore,
for

b =
⎡
⎣1.5

0.5
0

⎤
⎦

a perfect hedge does not exist.
However, if we change b to

b =
⎡
⎣2.5

1.5
0.5

⎤
⎦ ,

a call option with strike 0.5, then we have infinitely many solutions of the form

x(1) + Cx(2) = (A∗
1A1)

−1A∗
1b =

[−0.5
1

]
,[

x1

x2

]
=
[−0.5 + x3

1 − x3

]
,

where x3 is a free parameter corresponding to the number of units of the redundant
security.

2.2 Finding the Best Approximate Hedge

When the basis assets do not span the whole market (the market is not complete,
r(A) < m), then some focus assets cannot be hedged perfectly. That is, the solution
to

Ax = b
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does not always exist. Nevertheless, we would like to find at least the best approx-
imate hedge. The deviation of the basis asset portfolio payoff from the focus asset
is called the replication error:

ε = Ax − b.

A frequently used criterion is to minimize the sum of squared replication errors
(SSREs) over all states:

SSRE = ε2
1 + ε2

2 + · · · + ε2
m = (A1•x − b1)

2 + · · · + (Am•x − bm)2.

Fact. Assuming that the securities in A are linearly independent, the portfolio
minimizing the squared replication error is given as

x̂ = (A∗A)−1A∗b. (2.12)

Note that this portfolio has already come up as the candidate for the perfect hedge
in Section 2.1.3. Now we know that even if it is not the perfect hedge, it is in
some sense the best hedge that one can find.

The payoff of the best hedge is

Ax̂ = A(A∗A)−1A∗b.
The procedure of finding x by minimizing the sum of squared errors is known as
the least-squares method.

2.2.1 Geometric Interpretation of the Best Hedge

We say that two column vectors x and y are at right angles (are orthogonal or
perpendicular to each other) if x∗y = 0. The quantity

‖x‖ = √
x∗x

is called the length (norm) of the vector x.
We can reinterpret the sum of the squared hedging errors as the squared length of

the vector ε
SSRE = ‖ε‖2.

Since ε = Ax − b, the best approximate hedge achieves the shortest distance
between the focus asset b and the marketed subspace Span(A). Using three-dimen-
sional examples it is easy to verify that the shortest distance is achieved when the
hedging error ε is perpendicular to the marketed subspace Span(A). Thus the
optimality condition requires that ε is at right angles to each column in A

A∗ε̂ = 0.

Substituting for ε̂ we obtain

A∗(Ax̂ − b) = 0,

A∗Ax̂ = A∗b,
x̂ = (A∗A)−1A∗b,

which is exactly the equation (2.12).
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Figure 2.1. Geometric illustration of the best approximate hedge.

Example 2.4. Let us find the best approximate hedge to

b∗ = [1 2 3
]

using two basis assets

A∗•1 = [1 1 0
]

and A∗•2 = [0 1 0
]
.

We set

A =
⎡
⎣1 0

1 1
0 0

⎤
⎦

and find

x̂ = (A∗A)−1A∗b =
[

1
1

]
.

Graphically, when we are looking for the best hedge to the focus asset b in terms
of basis assets A•1 and A•2, we are trying to minimize the distance between the
focus asset b and the points in the marketed subspace formed by the basis assets
A•1 and A•2. The marketed subspace in this case is the horizontal plane formed
by the vectors A•1 and A•2. The point of shortest distance is the one where the
replication error (the vector ε) is perpendicular to the marketed subspace. If A is
the payoff matrix of the basis assets, then the payoff of the best hedge is equal to
A(A∗A)−1A∗b, as indicated in Figure 2.1.

If the columns of A are not linearly independent, then we can partition them into
linearly independent and redundant columns, as in Section 2.1.4. Then the best
hedge can be constructed in many different ways,

x̂(1) + Cx̂(2) = (A∗
1A1)

−1A∗
1b,
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with x̂2 arbitrary. However, the payoff of the best hedge is unique:

Ax̂ = A1(x̂
(1) + Cx̂(2)) = A1(A

∗
1A1)

−1A∗
1b.

2.3 Minimizing the Expected Squared Replication Error

The sum of squared replication errors assigns equal weight to each market scenario.
However, in reality some states of the world are more likely than others; for example,
historically, a weekly rate of return on the FTSE100 Index of between −0.5% and
+0.5% has a probability of 0.35, whereas a return of between −6.5% and −5.5% has
a probability of less than 0.01. Consequently, we are less concerned with the sum of
the squared errors and more interested in finding a hedging portfolio that minimizes
the expected squared replication error (ESRE). That is, instead of minimizing the
total sum of squared replication errors over all states,

min
x,ε=Ax−b

SSRE = ε2
1 + ε2

2 + · · · + ε2
m, (2.13)

we want to minimize the expected squared error,

min
x,ε=Ax−b

ESRE = p1ε
2
1 + p2ε

2
2 + · · · + pmε2

m, (2.14)

where p1, p2, . . . , pm > 0 are the objective probabilities of the individual states of
the world. We shall proceed in two steps.

1. Transform the problem (2.14) into minimizing the total sum of squared repli-
cation errors by writing

ESRE = p1ε
2
1 + p2ε

2
2 + · · · + pmε2

m

= ε̃2
1 + ε̃2

2 + · · · + ε̃2
m,

where
ε̃ = Ãx − b̃ (2.15)

for the as yet unknown matrices Ã and b̃. If we succeed, then the problem of
minimizing ESRE = p1ε

2
1 + p2ε

2
2 + · · · + pmε2

m has been transformed into
minimizing SSRE,

min
x,ε̃=Ãx−b̃

ε̃2
1 + ε̃2

2 + · · · + ε̃2
m,

for which the optimal portfolio is known to be

x̂ = (Ã∗Ã)−1Ã∗b̃.

2. Find the matrices Ã and b̃. First of all we know the relationship between ε̃2
i

and piε
2
i ,

ε̃2
i = piε

2
i = (

√
piεi)

2,

which means that we may take

ε̃i := √
piεi . (2.16)

Recall that ε = Ax − b, implying

εi = Ai•x − bi.
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Substitute this into (2.16) to obtain

ε̃i = √
piεi = √

piAi•x − √
pibi . (2.17)

Finally, compare (2.17) with (2.15) to realize that we should take

Ãi• := √
piAi•, (2.18)

b̃i := √
pibi . (2.19)

Consider a hedging problem Ax = b with replication error ε = Ax − b. To
minimize the expected squared replication error,

min
x,ε=Ax−b

p1ε
2
1 + p2ε

2
2 + · · · + pmε2

m,

compute new matrices Ã and b̃ by multiplying each row of A, b by the square
root of the probability for the corresponding state. The optimal hedging portfolio
is then given by

x̂ = (Ã∗Ã)−1Ã∗b̃.

Example 2.5. Let us solve part (3) of the introductory example.

Solution. Firstly, we note the payoff of basis and focus assets and the objective
probabilities

A =
⎡
⎣1 3

1 2
1 1

⎤
⎦ , b =

⎡
⎣1.5

0.5
0

⎤
⎦ , p(1) =

⎡
⎢⎣

1
2
1
6
1
3

⎤
⎥⎦ .

The transformed matrices are obtained, according to (2.18) and (2.19), by mul-
tiplying each row of the matrix A by the square root of the corresponding state
probability,

Ã =

⎡
⎢⎢⎢⎢⎢⎣

√
1
2 3

√
1
2√

1
6 2

√
1
6√

1
3

√
1
3

⎤
⎥⎥⎥⎥⎥⎦ , b̃ =

⎡
⎢⎢⎢⎣

1.5
√

1
2

0.5
√

1
6

0

⎤
⎥⎥⎥⎦ .

In MATLAB type

Atil = A.*(sqrt(p)*[1 1]);

btil = b.*sqrt(p);

The ‘.*’ operator signifies element-by-element multiplication, rather than a stan-
dard matrix multiplication. To obtain x̂ and ε̂ simply type

xhat = inv(Atil’*Atil)*Atil’*btil;

epshat = A*xhat-b;
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If you are calculating x̂ by hand, it is probably faster to solve the system,

(Ã∗Ã)x̂ = Ã∗b̃, Ã∗Ã =
[

1 13
6

13
6

11
2

]
, Ã∗b̃ =

[
5
6

29
12

]
,

x̂1 + 13
6 x̂2 = 5

6 ,

13
6 x̂1 + 11

2 x̂2 = 29
12 ,

which gives

x̂1 = − 47
58 , x̂2 = 22

29 , ε̂(1) =
⎡
⎢⎣

− 1
29

6
29

− 3
58

⎤
⎥⎦ =

⎡
⎣−0.0345

0.2069
−0.0517

⎤
⎦ .

Just out of curiosity let us see what happens with

p(2) =
⎡
⎢⎣

1
3
1
3
1
3

⎤
⎥⎦ .

The same procedure as above gives

x̂ =
[
− 5

6
3
4

]
and ε̂(2) =

⎡
⎢⎣

− 1
12

1
6

− 1
12

⎤
⎥⎦ =

⎡
⎣−0.0833

0.1667
−0.0833

⎤
⎦ .

Let us compare the two vectors of residuals side by side, together with the proba-
bilities in the two cases,

p(1) =
⎡
⎢⎣

1
2
1
6
1
3

⎤
⎥⎦ , p(2) =

⎡
⎢⎣

1
3
1
3
1
3

⎤
⎥⎦ , ε̂(1) =

⎡
⎣−0.0345

0.2069
−0.0517

⎤
⎦ , ε̂(2) =

⎡
⎣−0.0833

0.1667
−0.0833

⎤
⎦ .

Moving from p(1) to p(2), the probability of the first state decreases and the first
residual becomes larger in absolute value. The probability of the second state
increases twofold from 1

6 to 1
3 , this state is becoming more important (more likely)

and therefore the optimal replication error in the second state decreases from 0.207
to 0.167. Intuitively, the portfolio minimizing the expected squared replication error
will assign smaller errors (in absolute value) to the states with high probability and
higher errors to the states with low probability.

2.4 Numerical Stability of Least Squares

Computer arithmetic operates with a fixed number of decimal places (most com-
monly 16). This means every arithmetical operation on a computer is subject to
round-off errors, which sometimes leads to unexpected results, for example,

1017 + 1 − 1017 = 0
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but

1017 − 1017 + 1 = 1

in computer arithmetic.
Because of the round-off errors, two methods for solving the same system of linear

equations may generate very different results when implemented on a computer, even
though they would give the same result with pen and paper. Not all linear systems
exhibit numerical instability; those that do are called ill-conditioned. As an example
consider a hedging problem with three basis assets: bond, stock and a call option
struck at 1 + δ (1 > δ > 0), with payoff matrix

Aδ =

⎡
⎢⎢⎣

1 4 3 − δ

1 3 2 − δ

1 2 1 − δ

1 1 0

⎤
⎥⎥⎦ .

For 1 > δ > 0 this matrix has full rank but with δ = 0 the call option is a redundant
asset and A0 does not have a full rank. Assume that the focus asset is a call option
struck at 1.5,

b =

⎡
⎢⎢⎢⎢⎣

5
2
3
2
1
2

0

⎤
⎥⎥⎥⎥⎦ .

2.4.1 Round-Off Errors

For δ close to 0 the system

(A∗
δAδ)x = A∗

δb

is ill-conditioned. In practice, it is not a good idea to compute the best hedging
portfolio directly from the formula,

x(1) = (A∗
δAδ)

−1A∗
δb, (2.20)

when Aδ is close to not having a full rank, because then A∗
δAδ is even closer to not

having full rank, very much like for a close to 0 (say a = 0.001), a2 is even closer
to 0 (a2 = 0.000 001).

In equation (2.20) we are using all basis assets simultaneously and this creates
problems when the basis assets are close to being linearly dependent. A better
alternative is to perform the least squares sequentially by means of so-called QR
decomposition. In MATLAB one would write

[Q,R] = qr(Aδ);

x(2) = R\Q’*b;
The QR decomposition is explained at the end of this chapter.
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Below we compare the numerical values of x(1), ε(1) and x(2), ε(2) for δ = 1
2 10−4,

generated by MATLAB program chapter2sect4a.m:

x(1) =
⎡
⎣ 9998.94

−9998.94
9999.94

⎤
⎦ , x(2) =

⎡
⎣ 9999 + 5 × 10−8

−9999 − 5 × 10−8

10 000 + 5 × 10−8

⎤
⎦ , xexact =

⎡
⎣ 9999

−9999
10 000

⎤
⎦ ,

ε(1) =

⎡
⎢⎢⎣

−6.5 × 10−6

−4.6 × 10−6

−2.7 × 10−6

−3.8 × 10−6

⎤
⎥⎥⎦ , ε(2) =

⎡
⎢⎢⎣

8.3 × 10−12

4.6 × 10−12

2.8 × 10−12

1.8 × 10−12

⎤
⎥⎥⎦ , εexact =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

It is clear that the QR algorithm performs much better in terms of numerical preci-
sion.

2.5 Asset Prices, Returns and Portfolio Units

At long last we can talk about asset prices. Let S (standing for stock) be the vector
of prices for n basis assets. The payoff of the basis assets is stored in the m × n

matrix A. Practitioners hardly ever talk about payoffs; they prefer the word return.
There are two commonly used measures of return: total return and rate of return.
Total return is the payoff of the security divided by its price. If a security costs $4
and pays $3, its total return is 3

4 = 0.75, or 75%. The rate of return is the total return
minus one. In the previous example it is 3

4 − 1 = −0.25 = −25%. If the payoffs
are random, then returns will be random and vice versa.

Typically, one of the basis assets is a risk-free bond with total return Rf. By ‘risk-
free’we mean that the payoff of the bond is the same in all states of the world: we are
certain to obtain Rf pounds (euros, dollars) tomorrow for every pound (euro, dollar)
we invest in the bond today. ‘Risk-free’ does not necessarily mean that our payoff
will exceed the initial investment, that is, one can have situations where Rf < 1. By
excess return we mean the difference between the total return of a given security and
a fixed reference return (the reference return is in most cases the risk-free return).

Why did we talk about payoffs and not use returns from the beginning? The prob-
lem with returns is that they are not well defined for securities with zero price. This
might not have been a great limitation in the era when only stocks and commodities
were traded, but with the advent of derivative securities we have to deal with this
problem every day. For example, one cannot talk of the return to a futures contract
because the cost of entering a futures contract is (barring technicalities) zero. Thus
to make the pricing theory generally applicable one needs to use payoffs instead of
returns. In many cases, however, returns are well defined and in what follows we
shall restrict our attention to such situations.

2.5.1 Four Useful Ways of Writing Down the Replication Equation

Suppose we have two states of the world and two assets, one risk-free and one risky,
with payoffs

A =
[

110 60
110 40

]
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and prices

S =
[

100
50

]
.

The focus asset pays

b =
[

450
410

]
.

1. The solution of Ax = b is

x =
[

3
2

]
.

The vector x signifies the number of basis securities in the replicating port-
folio.

2. Note that Ax = b really means

A•1x1 + A•2x2 = b (2.21)

and that this can be rewritten as
A•1

S1
S1x1 + A•2

S2
S2x2 = b. (2.22)

Define Â as the matrix of returns, whereby each column of A is divided by
the respective price (that is Â•i = A•i/Si):

Â =
[

110
100

60
50

110
100

40
50

]
.

Then, naturally, the solution of Âx̂ = b is x multiplied by the respective price
(x̂i = xiSi):

x̂ =
[

3 × 100
2 × 50

]
=
[

300
100

]
.

The vector x̂ expresses the amount of money invested in each security.

3. Now manipulate (2.22) by adding and subtracting (A•1/S1)S2x2:

A•1

S1
(S1x1 + S2x2) +

(
A•2

S2
− A•1

S1

)
S2x2 = b.

Define Ā as the matrix of excess returns, whereby we subtract the first column
of Â from all the remaining columns:

Ā =
[

110
100

60
50 − 110

100
110
100

40
50 − 110

100

]
.

The solution of Āx̄ = b has the following interpretation: x̄1 = S1x1 + S2x2
is the no-arbitrage value of payoff b; x̄2 = S2x2 signifies the money invested
in the risky security:

x̄ =
[

400
100

]
.
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4. How should one set up the matrix Ã so that the solution of Ãx̃ = b has the
following interpretation: x̃1 is the no-arbitrage value of payoff b, and x̃2 is
the number of units of the second security in the replicating portfolio?

2.6 Arbitrage

Let x be an arbitrary portfolio of basis assets. Our first concern is with the prices of
basis assets being inconsistent, providing possibilities of riskless profit: arbitrage.
Mathematically, arbitrage can arise in two different ways: type II involves redundant
basis assets, whereas type I arbitrage does not.

Type I arbitrage. There is a portfolio that costs nothing to purchase (or one is paid
to hold it) and has non-negative payoff in all states, with a strictly positive payoff in
at least one state:

S∗x � 0 pay nothing, or receive some money today, (2.23)

Ax � 0 receive a non-negative amount tomorrow, (2.24)

Ax �= 0 this amount is strictly positive in at least one state. (2.25)

Example 2.6. Consider a market with the first two securities from Example 1.1 in
Chapter 1. Suppose that the prices of these securities were S1 = 1 and S2 = 1. Then
we could sell one unit of the first security and buy one unit of the second security,
which would cost nothing, and obtain a non-negative payoff

[
2 1 0

]
:

S∗x = [1 1
] [−1

1

]
= 0,

Ax =
⎡
⎣1 3

1 2
1 1

⎤
⎦[−1

1

]
=
⎡
⎣2

1
0

⎤
⎦ > 0.

This is very much like receiving a lottery ticket for free. With nothing to pay we
have the chance of obtaining 2 in the first state or 1 in the second state without the
risk of losing anything in the third state.

Another way of looking at the same situation is to realize that the second security
pays at least as much as the first security in all states, in mathematical terminology
we would say that the payoff of the first security is stochastically dominated by
the payoff of the second security. Therefore, the second security is unambiguously
more valuable than the first security, and it must command a higher price than the
first security to prevent arbitrage. In our example both securities have the same
price—hence the arbitrage opportunity.

Type II arbitrage. The second type of arbitrage is even better. There is a portfolio
that has negative price (you are given some money today to hold this portfolio) and
pays identically zero in all states tomorrow:

S∗x < 0, (2.26)
Ax = 0. (2.27)
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Note that the second type of arbitrage cannot occur if the basis assets are linearly
independent, because linear independence implies that Ax = 0 only if x = 0, in
which case trivially S∗x = 0. In plain English the second type of arbitrage implies
that there is a mispriced redundant basis asset. What is meant is the following. The
redundant basis asset has a certain price. The redundant asset can also be perfectly
replicated from other basis assets. If this replicating portfolio is cheaper or more
expensive than the redundant asset itself, the redundant asset is mispriced and there
is an easy arbitrage profit from selling the redundant asset and buying the replicating
portfolio or vice versa.

Example 2.7. Consider the four securities from Example 1.1 with prices S1 =
1, S2 = 2, S3 = 1, S4 = 2. Show that the fourth security is mispriced relative to
the first three securities.

Solution. From Example 1.12 in Chapter 1 we know that the portfolio consisting
of minus 1 unit of the first security, 1 unit of the second security and 0 units of the
third security has exactly the same payoff as the fourth security. However, the price
of this replicating portfolio is

−1 × S1 + 1 × S2 = 1,

whereas the price of the fourth security is

S4 = 2.

To create arbitrage we would therefore sell the fourth security and buy its replicating
portfolio. This position implies

x =

⎡
⎢⎢⎣

−1
1
0

−1

⎤
⎥⎥⎦ .

We can verify that with this choice of x

Ax =
⎡
⎣1 3 1.5 2

1 2 0.5 1
1 1 0 0

⎤
⎦
⎡
⎢⎢⎣

−1
1
0

−1

⎤
⎥⎥⎦ =

⎡
⎣0

0
0

⎤
⎦

and

S∗x = [1 2 1 2
]
⎡
⎢⎢⎣

−1
1
0

−1

⎤
⎥⎥⎦ = −1 < 0,

consistently with the definition of the second type of arbitrage.

The absence of the second type of arbitrage means that every marketed payoff
has a unique price (the so-called law of one price) and that prices are linear: the
price of a security with payoff Ax must be S∗x.
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2.7 No-Arbitrage Pricing

Having verified that there is no arbitrage among basis assets we can now use the
no-arbitrage principle to determine the price of any asset with known payoff. We
will refer to the asset whose price we wish to determine as a focus asset. This is
known as relative pricing, since we are trying to calculate the value of the focus
asset by taking the prices and payoffs of the basis assets as given.

The two types of arbitrage present themselves differently in pricing, too. If the
focus asset is redundant, we can find a replicating portfolio and from the absence of
type II arbitrage we conclude that the value of the focus asset is equal to the value
of the replicating portfolio.

Example 2.8. Assume that securities A•1, A•2, A•3 are priced as in the previous
example, S1 = 1, S2 = 2, S3 = 1. Find the implied no-arbitrage price of the
elementary security e1 (the first Arrow–Debreu security).

We know from Example 1.16 that portfolio
[
1 −1 2

]
replicates the firstArrow–

Debreu security. By the linearity of pricing, the price of e1 must be the same as the
price of this replicating portfolio, which is

1 × 1 + 2 × (−1) + 1 × 2 = 1.

Suppose now that the focus asset is not redundant. Does this mean we can say
nothing about its price? Not quite. We will not be able to pin down the price uniquely,
but the absence of type I arbitrage will restrict the price to a range. We can squeeze
the payoff of the focus asset between two basis asset portfolios: a super-replicating
portfolio that outperforms the focus asset in all scenarios and a sub-replicating
portfolio that performs worse than the focus asset in all states. Consequently, the
price of the focus asset will have to lie between the value of the most expensive
sub-replicating portfolio and the value of the cheapest super-replicating portfolio.

Example 2.9. Suppose we have one basis asset with payoff

A•1 =
⎡
⎣1

2
3

⎤
⎦

and price S1 = 2. Let us find the no-arbitrage price bounds for the asset b with
payoff:

b =
⎡
⎣1

1
2

⎤
⎦ .

Solution. We notice that one unit of the first security performs ‘just’ better than the
second security,

b =
⎡
⎣1

1
2

⎤
⎦ �

⎡
⎣1

2
3

⎤
⎦ = 1 × A•1,
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the word ‘just’ referring to the payoff in the first state which is the same for both the
focus asset and the super-replicating portfolio. On the other hand, half a unit of the
first security performs ‘just’ worse than the focus asset:

0.5 × A•1 =
⎡
⎣0.5

1
1.5

⎤
⎦ �

⎡
⎣1

1
2

⎤
⎦ = b.

Now the word ‘just’ refers to the payoffs in the second state. All in all, the super-
replication price bounds for the focus asset are

0.5 × S1 < S2 < 1 × S1,

1 < S2 < 2.

2.8 State Prices and the Arbitrage Theorem

The price of an elementary (Arrow–Debreu) security ej is called a state price and
is denoted ψj . The vector of all state prices is denoted ψ :

ψ =

⎡
⎢⎢⎢⎣
ψ1

ψ2
...

ψm

⎤
⎥⎥⎥⎦ .

In Example 2.8 we took the elementary security e1 as a focus asset and priced it by
the perfect replication argument. In a complete market all elementary securities can
be perfectly replicated and we can therefore find their unique no-arbitrage prices—
the state prices—by the perfect replication argument. Note that the elementary
securities have non-negative payoff and, therefore, in the absence of type I arbitrage
must command positive price. To sum up, no arbitrage in a complete market implies
positive state prices.

The converse is also true: positive state prices imply no arbitrage, and this is very
easy to establish. First of all, if we only take elementary state securities as basis
assets, then there can be no type II arbitrage because elementary state securities
are linearly independent. Secondly, the elementary state securities span the whole
market—the market is complete—and so we can determine uniquely the no-arbitrage
price of any other security with known payoff. It turns out that the no-arbitrage price
of the payoff b is exactly ψ∗b (see the next example). Now, having ψ > 0 and
b � 0, b �= 0 implies ψ∗b > 0, meaning that with strictly positive state prices
any non-negative payoff will always have positive price. Therefore, with strictly
positive state prices type I arbitrage cannot arise. Since we have already excluded
type II arbitrage we have demonstrated that strictly positive state prices imply no
arbitrage.

Example 2.10. Suppose that there are three states of the world and we know that
the state prices are ψ1, ψ2, ψ3. Find the no-arbitrage price of the security with
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payoff:

b =
⎡
⎣b1

b2

b3

⎤
⎦ .

Solution. We need to write b as a portfolio of elementary securities e1, e2, e3.
Trivially,

b = b1

⎡
⎣1

0
0

⎤
⎦+ b2

⎡
⎣0

1
0

⎤
⎦+ b3

⎡
⎣0

0
1

⎤
⎦

so that the portfolio which combines payoff b from elementary securities e1, e2, e3
is in fact x = b. Thus, by the linearity of no-arbitrage pricing, the price of b is

ψ∗x = ψ∗b.

Following the previous example, given the state price vector ψ the implied price
of securities A•1, A•2, . . . , A•n is

S∗ = [S1 S2 · · · Sn

] = [ψ∗A•1 ψ∗A•2 · · · ψ∗A•n
] = ψ∗A

and after transposition
A∗ψ = S. (2.28)

2.8.1 State Prices as an Indicator of Arbitrage

The state prices can be used with great advantage as an indicator of arbitrage.

Theorem 2.11 (Arbitrage Theorem). A market with n securities, m states of the
world, a security payoff matrix A ∈ R

m×n and a security price vector S ∈ R
n

admits no arbitrage if and only if there is a strictly positive state price vector
ψ ∈ R

m consistent with the security price vector S, that is,

S = A∗ψ. (2.29)

Proof. See website.

In a complete market the theorem does not tell us anything new. We have already
concluded in Section 2.8 that absence of type II arbitrage implies unique state prices
and that absence of type I arbitrage forces these state prices to be strictly positive.

In an incomplete market not all state prices are uniquely determined because not
all elementary securities are marketed. Mathematically, the system

S = A∗ψ
has infinitely many solutions (the situation where there is no solution would imply
type II arbitrage). The theorem now has a deeper meaning: it claims that in the
absence of arbitrage we can choose these undetermined state prices to be strictly
positive. It also claims that if we are unable to do so, then there is arbitrage among
the marketed assets.
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The following two examples discuss separately the complete and incomplete
market cases.

Example 2.12. Suppose we have a market with

A =
⎡
⎣1 3 1.5 2

1 2 0.5 1
1 1 0 0

⎤
⎦ and S∗ = [1 2 0.6 1

]
.

Decide whether there are any arbitrage opportunities.

Solution. According to the Arbitrage Theorem there is no arbitrage if and only if
there is a vector of strictly positive state prices such that

S = A∗ψ, (2.30)⎡
⎢⎢⎣

1
2

0.6
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1
3 2 1

1.5 0.5 0
2 1 0

⎤
⎥⎥⎦
⎡
⎣ψ1

ψ2

ψ3

⎤
⎦ . (2.31)

Since r(A) = 3 the unique candidate for a solution is

ψ = (AA∗)−1AS =
⎡
⎣0.2

0.6
0.2

⎤
⎦

and it is easy to verify that this value of ψ solves the state price equation (2.30).
Since all elements of ψ are positive, there is no arbitrage.

Example 2.13. Decide whether there are arbitrage opportunities in the following
market:

A =
⎡
⎣1 3

1 2
1 1

⎤
⎦ , S =

[
1
2

]
.

Solution. Here the market is not complete and with two linearly independent assets
and three states we should expect one free parameter in the solution for the state
prices.

We are solving S = A∗ψ :

ψ1 + ψ2 + ψ3 = 1, 3ψ1 + 2ψ2 + ψ3 = 2.

Take ψ3 as a free parameter and solve for ψ1 and ψ2

ψ1 = ψ3 (2.32)

and from the first equation
ψ2 = 1 − 2ψ3. (2.33)

Now we have to decide whether there are values of the free parameter ψ3 such
that all state prices are strictly positive. The condition ψ2 > 0 and (2.32) imply
ψ3 > 0, while ψ1 > 0 and (2.33) require ψ3 < 1

2 . Consequently, for 0 < ψ3 < 1
2
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the solution (2.32) and (2.33) of the original state price system is strictly positive,
meaning there is no arbitrage. It does not matter that there are also negative
solutions. We would only conclude that there is arbitrage if none of the state price
solutions were strictly positive (or if there were no solution at all).

2.9 State Prices and Asset Returns

When asset prices are not zero, we can rewrite the state price equation S = A∗ψ in
terms of returns. Take the original system:

S1 = A11ψ1 + A21ψ2 + · · · + Am1ψm,

S2 = A12ψ1 + A22ψ2 + · · · + Am2ψm,

...

Sn = A1nψ1 + A2nψ2 + · · · + Amnψm.

Now, divide each equation by its respective price to obtain total returns on the
right-hand side. Assuming that the first asset is risk-free, the first equation implies

1 = Rf(ψ1 + ψ2 + · · · + ψm),

whereas for the risky assets we have

1 = A12

S2
ψ1 + A22

S2
ψ2 + · · · + Am2

S2
ψm,

...

1 = A1n

Sn

ψ1 + A2n

Sn

ψ2 + · · · + Amn

Sn

ψm.

From now on we will treat the risk-free asset separately from the risky ones. Let us
denote the matrix of risky returns R̂,

R̂∗ =

⎡
⎢⎢⎢⎢⎢⎣

A12

S2

A22

S2
· · · Am2

S2
...

...
...

...

A1n

Sn

A2n

Sn

· · · Amn

Sn

⎤
⎥⎥⎥⎥⎥⎦ .

To sum up, the state price equations can be written as

1 = Rf(ψ1 + ψ2 + · · · + ψm), (2.34)

1 = R̂∗ψ. (2.35)

From these two identities it is clear that state prices are determined by the basis
asset return, independently of the basis asset price.
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2.10 Risk-Neutral Probabilities

If instead of the state price vector ψ we use a normalized vector q,⎡
⎢⎣
q1
...

qm

⎤
⎥⎦ =

⎡
⎢⎣
Rfψ1

...

Rfψm

⎤
⎥⎦ , (2.36)

then the bond pricing equation (2.34) reads

q1 + q2 + · · · + qm = 1,

that is, we can think of qi as probabilities. It is interesting to see how the pricing
formula for risky assets (2.35) changes in this new light. From (2.36) we have
ψ = q/Rf and substituting this into (2.35) we obtain

1 = R̂∗ q

Rf
(2.37)

and consequently
Rf = R̂∗q. (2.38)

What we have on the left-hand side is the risk-free return, whereas on the right-hand
side we obtain the expected return of the risky assets under probabilities qi .

Equivalently, to go back to the prices and payoffs let us multiply each equation
in the system (2.37) by its respective price, whereby we obtain

S = 1

Rf
A∗q. (2.39)

Taking the risk-free return as the discount rate, we find that the price of each security
is the present discounted value of its expected payoff under probabilities qi . Note
that this identity follows from the definition of qi , or, rather, it defines qi from the
returns of basis assets. As such (2.39) contains no deep economic intuition but on
the basis of it the values qi are called risk-neutral probabilities. Let us try to explain
why.

First of all, recall the problems of determining objective state probabilities. Since
events in financial markets, unlike rolling a fair die, are not controlled random
experiments, every market participant has his/her own assessment of the situation,
by means of so-called subjective probabilities. It is difficult to get inside the heads of
market participants, so let us simplify matters further by supposing that the market
as a whole assigns probabilities to different outcomes.

We know from economic theory that a risk-neutral agent with subjective proba-
bilities p would price assets according to the formula,

S = 1

Rf
A∗p. (2.40)

Assuming that the market as a whole is risk-neutral, the comparison of (2.39) with
(2.40) reveals that we may then interpret q as the subjective state probabilities seen
by the market as a whole; hence the name risk-neutral probabilities. The argument
assumes that the market is actually risk-neutral and that it makes sense to think of
the market as one uniform entity, but it does not imply one or the other.
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2.11 State Prices and No-Arbitrage Pricing

We have seen in Section 2.8.1 that state prices can be used as an indicator of arbitrage
among basis assets. Analogously, they can be used to price focus assets.

Theorem 2.14 (Arbitrage Pricing Theorem). Consider a market with basis
assets characterized by payoff matrix A and price vector S. Suppose we wish to
price a focus asset b, assuming that the presence of b does not affect prices of
the existing basis assets. The pricing procedure has two steps.

1. Find all strictly positive state prices ψ consistent with the price of the basis
assets,

A∗ψ = S.

If this set is empty, there is arbitrage among basis assets. If it is a singleton
(a set containing only one state price vector), the market is complete. In
the remaining cases the market is incomplete.

2. Price the focus asset using all the state prices found above. The set of
prices thus obtained is equal to the set of all possible no-arbitrage prices
for the focus asset. This set is a singleton if and only if the focus asset is
redundant.

The only material difference from Section 2.8.1 is that now we have to find all
strictly positive state prices, whereas to conclude that there was no arbitrage it was
enough to find one. It is often more practical to use risk-neutral probabilities instead
of state prices; in that case one finds q from (2.38) and prices focus assets using
equation (2.39).

Example 2.15. In a market with three basis assets and three states

A =
⎡
⎣1 3 2

1 2 1
1 1 0

⎤
⎦ , S =

⎡
⎣1

2
1

⎤
⎦ ,

we wish to introduce a new security with payoff

b∗ = [1.5 0.5 0
]
.

If the introduction of the new security leaves the prices of basis assets unchanged,
find the no-arbitrage price range for the new security.

Solution. The state prices are the same as in the Example 2.13, since it is easy to
see that the third basis asset is redundant relative to the first two and it is priced
correctly. Recall that the state prices are given by

ψ1 = ψ3, ψ2 = 1 − 2ψ3, 0 < ψ3 < 1
2 , (2.41)

therefore the no-arbitrage price of the payoff[
1.5 0.5 0

]
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is

S4 = 1.5ψ1 + 0.5ψ2 + 0ψ3 = 1.5ψ3 + 0.5(1 − 2ψ3)

= 0.5(1 + ψ3).

Taking into account the restriction (2.41) we find that

0.5 < S4 < 0.75.

2.12 Asset Pricing Duality

In this chapter we have seen two ways of pricing a focus asset: by replication and by
using state prices. The fact that these two methods yield the same result is known as
asset pricing duality. Below we formulate this important result mathematically. The
(super-/sub-)replication pricing is known as the primal method, while the valuation
via state prices is referred to as the dual method.

Theorem 2.16 (asset pricing duality). Consider an arbitrage-free market with n

securities, m states of the world, basis asset payoff matrix A ∈ R
m×n and basis

asset price vector S ∈ R
n. Denote by Sb the set of no-arbitrage prices of the focus

asset b relative to the basis assets. The following statements hold.

1. The no-arbitrage price range is given by

Sb = {ψ∗b : ψ ∈ R
m, ψ > 0, A∗ψ = S}. (2.42)

This set contains a single point if and only if b is redundant, i.e.

r(A) = r(A | b).
2. b is a redundant security if and only if

Sb = {S∗x : x ∈ R
n, Ax = b}. (2.43)

3. b is non-redundant if and only if Sb is an open interval given by

Sb = (max{S∗x : x ∈ R
n, Ax � b},min{S∗x : x ∈ R

n, Ax � b}. (2.44)

Whether to use the primal or the dual approach to pricing is a matter of mathe-
matical and numerical convenience. In a complete market the dual approach (2.42)
is often the most straightforward. If, on the other hand, the market is substantially
incomplete, meaning that m is much larger than r(A), it is typically more efficient
to perform numerical computations using the primal approach (2.43), (2.44).

Suppose now that the market price of b falls outside Sb. When it comes to ex-
ploiting arbitrage opportunities, the dual approach is of no use while the primal
approach gives us a precise trading recipe. When the market price of b drops below
the price of the sub-replicating portfolio, (2.44) instructs us to buy the focus asset and
(short)sell the most expensive sub-replicating portfolio. Conversely, if the market
price of b were above the super-replicating bound, we would sell the focus asset and
buy the least expensive super-replicating portfolio to create the arbitrage trade.
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2.13 Summary

• A system of equations may have zero, one or infinitely many solutions. Sup-
pose that we interpret the left-hand side of the system as a payoff of a portfolio
of basis assets and the right-hand side as a payoff of a focus asset. Whether
a solution exists is purely determined by the position of the focus asset rel-
ative to the marketed subspace formed by basis assets. If the focus asset is
redundant, we have a solution, otherwise there is no solution. If basis assets
span the whole market (the market is complete), then a solution necessarily
always exists.
On the other hand the uniqueness of a solution (provided that one exists,
as discussed above) is purely determined by the number of redundant basis
assets. With redundant basis assets there will be infinitely many solutions,
without redundant basis asset the solution is unique (always assuming that a
solution exists in the first place).

• Assuming that the basis assets in the matrix A are linearly independent, the
portfolio minimizing the sum of squared replication errors relative to focus
asset b is given by

x̂ = (A∗A)−1A∗b.

• When calculating x̂ in a computer program, it is advisable to use QR decom-
position of A rather than invert A∗A, because A∗A is extremely close to being
singular if columns of A are nearly linearly dependent. In terms of MATLAB
code

xhat=lscov(A,b)

is preferable to

xhat=inv(A’A)*A’b

• The best approximating portfolio constitutes a perfect hedge if

b = Ax̂ = A(A∗A)−1A∗b,

in which case b is a redundant security.

• If we wish to minimize the expected squared replication error, it is enough to
replace A and b with Ã, b̃ obtained by multiplying each row of A and b by
the square root of the probability of the corresponding scenario.

• There are two types of arbitrage. Type I arbitrage resembles a lottery ticket
given away for free, nothing to pay (or receive some money) today and positive
gain in some states tomorrow. Type II arbitrage provides sure payment today
against zero liabilities tomorrow. It only arises when there is a mispriced
redundant basis asset.

• Absence of the second type of arbitrage implies the following relationship
between assets prices and state prices:

S = A∗ψ.



2.14. Notes 49

• The state prices implied by basis assets need not be unique (this will happen
when the market is not complete), but in the absence of arbitrage they can be
chosen strictly positive.

• If there is a marketed risk-free asset with total return Rf, then the risk-neutral
probabilities are related to the state prices as follows:

q = Rfψ.

The risk-neutral probabilities can be calculated from the system,

Rf = R̂∗q,
which in words says that the risk-neutral expected return on the risky assets
must equal the risk-free return.

• The pricing equation with risk-neutral probabilities states that the price of any
asset is equal to the present discounted value of the asset’s expected payoff
under the risk-neutral probabilities:

no-arbitrage value(b) = b∗q
Rf

.

When pricing focus assets in an incomplete market we let q go over all strictly
positive values consistent with the prices of basis assets:

S = A∗q
Rf

.

• Asset pricing can be performed in two substantially different ways—either
by replication (primal method) or by using state prices or risk-neutral prob-
abilities (dual method). The fact that the price regions obtained by the two
methods are the same is called asset pricing duality.

2.14 Notes

The definition of type I and type II arbitrage is due to Ingersoll (1987). TheArbitrage
Theorem appears in Ross (1978). The term ‘risk-neutral probabilities’ is due to
Arrow (1971). Both the Arbitrage Theorem and the Arbitrage Pricing Theorem are
a consequence of the separation theorem for convex sets (see Duffie 1996, Chapter 1).

2.15 Appendix: Least Squares with QR Decomposition

2.15.1 Least Squares with One Explanatory Variable

Suppose we are given two n-dimensional vectors x and y. We can think of y as
the dependent variable and of x as the explanatory variable. Our task is to find the
least-squares approximation of y using x:

min
α

(y − αx)∗(y − αx).

The first-order conditions read

x∗(y − αx) = 0,
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which means that the vector of residuals y−αx is at a right angle to the explanatory
variable. From here we solve for α:

α̂ = x∗y
x∗x

.

We have decomposed y into two components, one that is parallel to x and one that
is orthogonal to x:

y = α̂x︸ ︷︷ ︸
parallel to x

+ y − α̂x.︸ ︷︷ ︸
orthogonal to x

2.15.2 Gramm–Schmidt Orthogonalization

Suppose now we have several explanatory variables x1, . . . , xm each represented by
an n-dimensional vector.

1. Take x1 and normalize it to have unit length

ε1 = x1

r11
, (2.45)

r11 = ‖x1‖. (2.46)

2. Now takex2 and decompose it into a component parallel to ε1 and a component
orthogonal to ε1:

x2 = r12ε1 + (x2 − r12ε1). (2.47)

The coefficient r12 turns out to be

r12 = ε∗
1x2. (2.48)

Take the residual, normalize it to have length 1 and call it ε2:

ε2 = x2 − r12ε1

r22
, (2.49)

r22 = ‖x2 − r12ε1‖. (2.50)

3. Take x3 and decompose it into a vector parallel to ε1, a vector parallel to ε2

(which is itself orthogonal to ε1) and a residual orthogonal to both ε1 and ε2:

x3 = r13ε1 + r23ε2 + (x3 − r13ε1 + r23ε2), (2.51)

r13 = ε∗
1x3, r23 = ε∗

2x3. (2.52)

Normalize the residual to have length 1 and call it ε3:

ε3 = x3 − r13ε1 − r23ε2

r33
, (2.53)

r33 = ‖x3 − r13ε1 − r23ε2‖, etc. (2.54)

If x1, . . . , xm are linearly independent, then ε1, . . . , εm generated by the Gramm–
Schmidt process are orthogonal to each other and

Span(x1, . . . , xm) = Span(ε1, . . . , εm).
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2.15.3 QR Decomposition

The QR decomposition is a byproduct of the orthogonalization process. Namely,
we can write

x1 = ε1r11,

x2 = ε1r12 + ε2r22,

...

xm = ε1r1m + · · · + εmrmm,

which in matrix form reads

X = QR,

X = [x1 x2 · · · xm
]
,

Q = [ε1 ε2 · · · εm
]
.

The elements of R on and above diagonal equal rij computed in equations (2.45)–
(2.54), the elements below diagonal are 0. Because the vectors εi are orthogonal
with length 1 by construction, we have

Q∗Q = Im,

which means that Q is an orthogonal matrix.

Example 2.17. In Section 2.4 we have Aδ = QR with

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2

3
10

√
5 2

√
30

30
1
2

1
10

√
5 −

√
30

30

1
2 − 1

10

√
5 −4

√
30

30

1
2 − 3

10

√
5 3

√
30

30

⎤
⎥⎥⎥⎥⎥⎥⎦ , R =

⎡
⎢⎢⎣

2 5 3 − 3
2δ

0
√

5 (1 − 3
10δ)

√
5

0 0 3
√

30
30 δ

⎤
⎥⎥⎦ .

2.15.4 Least-Squares and QR Decomposition

We have concluded in Example 2.4 that the optimal hedging error ε,

ε = Ax̂ − b, (2.55)

must be orthogonal to all basis assets in A and by construction of the QR decom-
position ε will therefore be orthogonal to all vectors in Q:

Q∗ε = 0.

Now substitute QR for A in (2.55) and multiply both sides by Q∗:

Q∗ε︸︷︷︸
0

= Q∗Q︸ ︷︷ ︸
I

Rx̂ − Q∗b.

Then x̂ is obtained simply by solving

Rx̂ = Q∗b
and because R is upper triangular this step does not require matrix inversion.
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2.16 Exercises

Exercise 2.1. The best hedging portfolio is unique when (circle one answer)
(a) the securities available for hedging are linearly independent;
(b) r(A) < m;
(c) there are fewer states than securities;
(d) none of the above.

Exercise 2.2. The payoff of the best hedging portfolio is always the same, even if
the best portfolio itself is not unique:

(a) TRUE;
(b) FALSE.

Exercise 2.3 (identifying arbitrage). In each of the following markets decide
whether there are any arbitrage opportunities and if so try to identify them by con-
structing a type I or type II arbitrage portfolio x. If there is no arbitrage, give a
vector of strictly positive state prices consistent with the price of basis assets.

(a) A =
⎡
⎣2 1 1

1 1 0
0 1 −1

⎤
⎦ , S =

⎡
⎣ 2

1
0.5

⎤
⎦ .

(b) A =
⎡
⎣2 1 0 3 1

1 1 1 2 1
0 1 2 1 0

⎤
⎦ , S =

⎡
⎢⎢⎢⎢⎣

1
1
1
2
1
3

⎤
⎥⎥⎥⎥⎦ .

(c) A =
⎡
⎣2 0

1 1
0 2

⎤
⎦ , S =

[
1

1001

]
.

Exercise 2.4 (no-arbitrage pricing in incomplete market). Suppose that there
are four market scenarios, and there are three basis assets with payoff matrix and
price vector,

A =

⎡
⎢⎢⎣

1 0 3
0 1 3
0 2 3
1 0 3

⎤
⎥⎥⎦ , S =

⎡
⎢⎣

1
3
1
2

2

⎤
⎥⎦ .

(a) What is the return on the riskless bond?
(b) Find all state prices which are consistent with A and S, and based on this

finding decide whether there are any arbitrage opportunities.
(c) Is the market in this model complete?
(d) What are the risk-neutral probabilities?
(e) A focus asset with payoff

[
1 2 0 1

]
is introduced, without affecting the

price of the basis assets. What are the possible no-arbitrage prices of the focus
asset? (Hint: price the new security using the state prices calculated in (b) or
the risk-neutral probabilities calculated in (d).)
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Exercise 2.5 (option pricing with several basis assets). Suppose that R1 and R2

are two stock returns, and assume further that these returns are independent and iden-
tically distributed (you may need to review the concept of stochastic independence
in Appendix B),

P(R1 = 1.2) = P(R2 = 1.2) = 1
2 ,

P (R1 = 1.0) = P(R2 = 1.0) = 1
2 .

Suppose that there is another security with a risk-free return R = 1.05.

(a) How many scenarios are needed to describe the joint distribution of R1 and
R2?

(b) Taking the safe asset and the two risky securities as basis assets find the
(range of) risk-neutral probabilities in this model and decide whether there
are arbitrage opportunities.

(c) Take the three securities above as basis assets. A new asset, which can be
thought of as a digital call option on a stock market index, is introduced. The
payoffs of the digital call are

D = 1 for
R1 + R2

2
> 1.05,

D = 0 for
R1 + R2

2
� 1.05.

Find the no-arbitrage price (or a range of prices as the case may be) for the
digital call.

Exercise 2.6 (option hedging). Find the portfolio minimizing the expected squared
replication error in the case with eight states of the world, two securities available
for hedging with payoffs [

1 1 1 1 1 1 1 1
]

and [
0.80 0.90 0.95 1.00 1.05 1.10 1.20 1.30

]
,

respectively, when the security to be hedged pays[
0 0 0 0 50 100 200 300

]
in the individual states. The objective state probabilities are[

0.05 0.1 0.15 0.20 0.20 0.15 0.1 0.05
]
.

Use Excel or MATLAB to avoid lengthy calculations by hand.

Exercise 2.7 (valuation of hedging portfolio). The historical distribution of month-
ly returns on the PFCo shares is shown in Figure 2.2.
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Figure 2.2. Empirical distribution of returns.

Table 2.2. Amount X to be hedged.

PFCo stock return X

0.04 £2000
0.02 £1000
0 £100

−0.02 £20
−0.04 £0

An option trader wishes to hedge a random amount X, with X depending on the
realized monthly PFCo stock return as shown in Table 2.2. The risk-free rate is 0%
and PFCo shares currently trade at £2.

(a) Using the stock and the risk-free bank account, hedge exposure X so as to
minimize the expected squared replication error. State the required number
of shares and the bank account balance.

(b) What is the cost of the optimal hedge?



3
Risk and Return in the One-Period Model

Striking a balance between risk and return is a daily routine of every finance pro-
fessional. This chapter will outline the definition of standard preferences over risk
and explain how to compute optimal investment decisions generated by those pref-
erences. The main tools needed for this analysis are calculus and probability.

We start by explaining how risky investment opportunities are ranked by the
expected utility paradigm. Expected utility is often criticized for being ad hoc, for
using meaningless units, for its results being dependent on initial wealth, etc.; in
short, for being worlds apart from mean-variance analysis. Chapter 3 dispels this
dangerous myth. When correct measurement units are used, all utility functions
look exactly the same for small risks, and their investment advice is consistent
with mean-variance analysis. When the risks are large and/or asymmetric, the
mean-variance analysis may lead to investment decisions that are inconsistent with
the basic assumption that investors prefer more to less, whereas increasing utility
functions will give coherent advice—albeit advice that depends on investor’s attitude
to large risks. We will illustrate these points with numerical examples for the HARA
class of utility functions.

To motivate the analysis, consider the following example.

Example 3.1 (optimal investment). An investor with a total wealth of £1 000 000
and risk-free income of £200 000 a year wishes to invest her wealth for one year.
She can split her wealth between two assets: a security bearing 2% per annum risk-
free, or a risky asset with a return of −10% or 20% with equal probability. Suppose
the investor’s attitude to risk is characterized by a utility with constant relative risk
aversion equal to 5. Find the optimal amount to be invested in the risky asset. How
much worse off would the investor be in the absence of the risky asset?

This example may seem theoretical because not many investors walk around with
the coefficient of relative risk aversion written on their forehead. On the other hand,
if one is able to come up with an investment decision that matches a given attitude
to risk (coefficient of relative risk aversion), then in turn the attitude to risk can be
inferred from investment decisions. With this observation in mind we now turn our
attention to the theoretical foundations. The important concepts to watch out for are
the risk premium, the HARA utility, local risk aversion, the certainty equivalent, the
investment potential and the Sharpe ratio.
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Figure 3.1. Concave utility function.

3.1 Utility Functions

In very general terms the evaluation of risky cash flows is based on three premises:

(1) investors prefer more to less;

(2) positive deviations from average wealth cannot compensate for equally large
and equally probable negative deviations;

(3) risky distribution of wealth is valued by its certainty equivalent.

The simplest representation of risk-averse preferences is provided by the expected
utility paradigm. In this paradigm, axioms (1) and (2) are captured by an increasing
concave function called the utility function (see Figure 3.1). With a concave utility
function, equally large upside and downside wealth movements away from the
reference level v will cause larger downside movement in utility. This captures
investor’s risk aversion.

The process of evaluating an uncertain distribution of wealth is described in
Figure 3.2. We start with a distribution of wealth, depicted in this case by five bars,
on the horizontal (wealth) axis. Each bar corresponds to one level of wealth and
the height of each bar captures the probability of achieving that value of wealth.
The arrows take us to the utility function and then to the vertical axis. The five bars
on the vertical axis depict the distribution of the utility of wealth. Note that while
the five bars on the horizontal axis are placed symmetrically around the middle
value, the corresponding bars on the vertical axis are skewed towards lower values
of utility, that is, the investor puts higher emphasis on losses and lower emphasis on
gains.

We now compute the expected utility of wealth which corresponds to the average
position of the five bars on the vertical (utility) axis. The bold arrow is taking us
back from expected utility via the utility function to the certainty equivalent wealth.
Note that the certainty equivalent falls below the average level of risky wealth. The
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Figure 3.2. Evaluation of risky outcomes using expected utility.

difference is known as the risk premium:

risk premium = average wealth − certainty equivalent wealth.

This measures the amount of compensation that must be given to a risk-averse
investor in order for her to be willing to hold risky assets.

3.1.1 Constant Absolute Risk Aversion (CARA)

In applications we typically evaluate distributions of wealth relative to some refer-
ence level v which is assumed to be risk-free. It is natural to inquire which utility
functions look the same relative to the origin v, regardless of where that origin lies.
To capture this invariance property we write

U(V )

U(v)
= f (V − v) (3.1)

for all V, v and the as yet undetermined function f . It turns out that the only utility
function meeting this condition is exponential (see Exercise 3.10). Of course, not
all exponential functions are increasing and concave, but it is easy to verify that

CARAa(V ) = −e−aV with a > 0 (3.2)

meets our requirements.
The coefficient a is called the coefficient of absolute risk aversion, and the negative

exponential utility (3.2) is known as the constant absolute risk-aversion (CARA)
utility. Why ‘constant absolute’ is clear from equation (3.1); the utility reacts to
deviations in absolute wealth (as opposed to percentage deviations) and the reac-
tion is constant with respect to the choice of origin v. There is a more technical
definition of the coefficient of absolute risk aversion that we will simply state as a
fact.
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Fact. For a general utility function U , the coefficient of local absolute risk
aversion A(v) at point v is defined as

A(v) = −U ′′(v)
U ′(v)

. (3.3)

Consider an investor with risk-free wealth v who faces a small risk with mean
zero and variance σ 2 ≈ 0. To accept the risk the investor requires a risk premium
of the size A(v)σ 2.

Proof. See website.

3.1.2 Constant Relative Risk Aversion (CRRA)

Suppose we wish to find a utility function with constant response to relative change
in wealth V/v, so that

U(V )

U(v)
= f

(
V

v

)
. (3.4)

The utility function satisfying (3.4) is called the constant relative risk-aversion
(CRRA) utility. It takes the form

CRRAγ (V ) =
⎧⎨
⎩

V 1−γ

1 − γ
for V > 0,

−∞ for V < 0,
with γ > 0, γ �= 1, (3.5)

see Exercise 3.11. Parameter γ is the coefficient of relative risk-aversion. The
expression (3.5) is not well-defined for γ = 1, but Exercise 3.9 shows that

lim
γ→1

V 1−γ − 1

1 − γ
= ln V,

and we consequently define

CRRA1(V ) =
{

ln V for V > 0,
−∞ for V < 0.

For a general utility function U the coefficient of local relative risk aversion R(v)

at point v is defined as
R(v) = vA(v), (3.6)

where A(v) is the coefficient of absolute risk aversion defined in (3.3). The
reciprocal 1/R(v) is called the coefficient of relative risk tolerance.

Example 3.2. Find the coefficient of relative risk aversion of logarithmic utility.

Solution. By definition (3.6),

R(v) = −v(ln v)′′

(ln v)′
= −vv−2

v−1 = 1.
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This confirms that logarithmic utility is a CRRA utility with coefficient of relative
risk aversion equal to 1 for all reference levels v > 0.

3.1.3 Hyperbolic Absolute Risk Aversion (HARA)

The most versatile commonly used class of utility functions is a generalization of the
CRRA and CARA utilities. The best way to think of HARA utility is to imagine that
an investor with CRRA utility receives extra risk-free wealth V̄ so that her utility
becomes

HARAγ,V̄ (V ) =
⎧⎨
⎩

(V̄ + V )1−γ

1 − γ
for V > −V̄ ,

−∞ for V < V̄ ,

for γ > 0, γ �= 1. (3.7)

HARA1,V̄ (V ) =
{

ln(V̄ + V ) for V > −V̄ ,

−∞ for V < V̄ .
(3.8)

This definition can be extended to negative values of γ by setting

HARAγ,V̄ (V ) = |V̄ − V |1−γ

1 − γ
for γ < 0. (3.9)

With γ < 0 the function is increasing only on the interval (−∞, V̄ ) and becomes
decreasing from V̄ onward. In such a case we say that V̄ is the bliss point.

The coefficient of absolute risk aversion reads

Aγ,V̄ (v) =
{
γ (V̄ + v)−1 for γ > 0,

−γ (V̄ − v)−1 for γ < 0 and v < V̄ .
(3.10)

The graph of Aγ,V̄ (v) as a function of v is a hyperbola, hence the acronym HARA.
At this stage it is not entirely obvious where the exponential CARA utility fits in as
a special case. We will see in Section 3.5.1 that it is obtained in the limit γ → ±∞.

3.2 Expected Utility Maximization

Having established what we mean by constant relative risk aversion, we are now in
a position to find the optimal investment for our investor. Denote by Rf the risk-free
return, by R the risky return, by W the wealth invested in the risky asset, by y the
income, and by V0 the initial wealth.

The end-of-period wealth is

V = WR + (V0 − W)Rf + y

= RfV0 + y + W(R − Rf). (3.11)

The amount v = RfV0 +y = 1 220 000 is risk free; this will be our reference wealth
level. We recall from Chapter 2 that the random quantity R−Rf is called the excess
return of the risky asset. To simplify the notation we denote the excess return by X:

X := R − Rf . (3.12)
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In our example the risky return takes two values: Ru = 1.2 andRd = 0.9. Therefore,
the excess return also takes two values:

Xu = Ru − Rf = 0.18 and Xd = Rd − Rf = −0.12.

It is convenient to simplify the self-financing condition (3.11) further by intro-
ducing a different choice variable:

α := W/v. (3.13)

The new variable α is the amount of risky investment as a fraction of the risk-free
reference wealth v. From (3.11), (3.12) and (3.13) we obtain

V = v + WX = v(1 + αX).

Depending on the realization of the risky return the terminal wealth will be either

Vu = v(1 + αXu) = 1 220 000 × (1 + 0.18α)

or

Vd = v(1 + αXd) = 1 220 000 × (1 − 0.12α),

with probabilities pu and pd, respectively. In our example, pu = pd = 0.5.
Thus we are solving

max
α∈R

E[CRRAγ (V )] = v1−γ max
α∈R

E

[
(1 + αX)1−γ

1 − γ

]

= v1−γ max
α∈R

(
pu

(1 + αXu)
1−γ

1 − γ
+ pd

(1 + αXd)
1−γ

1 − γ

)
.

To find the maximum we must differentiate the expression above with respect to α

and equate it to zero. This gives the so-called first-order condition:

puXu(1 + α̂Xu)
−γ + pdXd(1 + α̂Xd)

−γ = 0. (3.14)

We simplify (3.14) by moving the powers of α̂ to opposite sides of the equation and
subsequently by raising both sides to the power −1/γ to obtain expressions that are
linear in α̂: (

− puXu

pdXd

)−1/γ

(1 + α̂Xu) = 1 + α̂Xd.

Finally, we solve for α̂:

α̂ = 1 − (−(puXu/pdXd))
−1/γ

(−(puXu/pdXd))−1/γ Xu − Xd
.

On substituting in the parameter values of our numerical example we find that

α̂ = 1 − (1.5)−1/γ

(1.5)−1/γ 0.18 + 0.12
, (3.15)

and with γ = 5 we obtain
α̂ = 0.272 37. (3.16)
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Using the optimal investment the investor’s wealth at the end of the period will
be either

Vu = 1 220 000 × (1 + 0.272 37 × 0.18) = 1 279 812

if she is lucky and the risky return is high, or

Vd = 1 220 000 × (1 − 0.272 37 × 0.12) = 1 180 125

if the risky return is low.

3.3 The Existence of Optimal Portfolios

Does an optimal portfolio always exist? The answer to this important question is
supplied by the theorem below. Before we write it down we need to establish several
facts and some notation for concave functions.

Consider a concave function U : R → [−∞,∞). The effective domain of U is
the set of points where U is finite:

dom U := {x ∈ R : U(x) > −∞}.
A concave function U is automatically continuous on the interior of dom U , but it
need not be continuous at the endpoints of dom U . What we need for our purposes
is continuity as we move from inside dom U to its boundary. Mathematically, we
require

lim sup
y→x

U(y) = U(x) for all x ∈ R,

and when this condition is satisfied we say that the concave function U is closed.
Closedness is a slightly weaker requirement than continuity. For example, the
concave function

U(x) =
{√

x for x � 0,

−∞ for x < 0,

is closed but it is not continuous at 0 where its value jumps from 0 to −∞.
Concave functions need not be differentiable at every interior point x of dom U

but they always possess left and right derivatives:

U ′+(x) := lim
h→0+

U(x + h) − U(x)

h
, U ′−(x) := lim

h→0−

U(x + h) − U(x)

h
.

We have U ′−(x) � U ′+(x) and both U ′−(x) and U ′+(x) are non-increasing functions
of x. Outside the effective domain we adopt the following convention for the
derivatives:

U ′−(x) = U ′+(x) = ∞ for x < inf dom U,

U ′−(x) = U ′+(x) = −∞ for x > sup dom U.

Theorem 3.3. Suppose that U : R → [−∞,∞) is a closed concave function and
that there is an open interval dom+ U on which U is strictly increasing. Assume
that

limx→∞ U ′+(x)

limx→−∞ U ′−(x)
� 0,

where we adopt the convention −∞/∞ � 0.
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Figure 3.3. The inverse utility function. Utility is on
the horizontal axis, wealth is on the vertical axis.

Let X be an R
n-valued bounded random variable and suppose that there exists

a probability measure Q such that EQ[X] = 0. Then, for any v ∈ dom+ U , the
maximizer in

sup
W∈Rn

E[U(v + WX)]
exists.

Proof. See the end-of-chapter notes.

3.4 Reporting Expected Utility in Terms of Money

Only the level of wealth associated with the utility function, not the utility itself,
has a direct economic meaning. Therefore, we do not report the desirability of an
investment strategy in terms of expected utility but rather in terms of wealth that
would generate that level of expected utility. The risk-free wealth that generates the
same level of utility as a given risky distribution of wealth is called the certainty
equivalent. Its calculation was depicted graphically in Figure 3.2.

Suppose the expected utility of the risky investment is u. Its certainty equivalent
CE is given implicitly by

u = U(CE). (3.17)

The solution of (3.17) is given by the inverse utility function

CE = U−1(u).

Graphically, the inverse function is found by mirroring the graph of the utility
function in Figure 3.1 along the 45◦ line, as shown in Figure 3.3.

Algebraically, the computation of the inverse function requires a solution of (3.17)
in variable CE. In the CRRA case we are solving

u = CE1−γ

1 − γ
,
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which yields
CE = ((1 − γ )u)1/(1−γ ) = CRRA−1

γ (u). (3.18)

In our numerical example the expected utility reads

u(α) = v1−γ

1 − γ
(pu(1 + αXu)

1−γ + pd(1 + αXd)
1−γ ), (3.19)

and the corresponding certainty equivalent is obtained by substituting (3.19) into
(3.18),

CE(α) = CRRA−1
γ (u(α)) = v(pu(1 + αXu)

1−γ + pd(1 + αXd)
1−γ )1/(1−γ ).

With the optimal investment computed earlier this yields

CE(α̂) = 1 220 000 ×
(
(1 + 0.272 37 × 0.18)−4 + (1 − 0.272 37 × 0.12)−4

2

)−1/4

= 1 224 942. (3.20)

We conclude that the investor is better off by £4,942 compared with her holding
only the risk-free asset.

3.5 Normalized Utility and Investment Potential

It is interesting to ask how the optimal risky investment changes with the level of
local risk aversion. It seems reasonable to expect that the amount of risky investment
falls with increasing aversion to risk, but at what rate? If we double risk aversion,
will the decline in risky investment be twofold, or perhaps fourfold? We can examine
this dependence numerically by plotting the optimal investment α as a function of
relative risk tolerance 1/γ in equation (3.15). The result, depicted in Figure 3.4, is
linear for a wide range of plausible γ values, even though the expression in (3.15)
does not look linear at first sight.

Similarly, we can examine the dependence of the certainty equivalent gain on the
risk aversion. This dependence again turns out to be close to linear. It therefore
seems economically meaningful to compute portfolio weights and certainty equiv-
alent gains normalized by local risk aversion. This turns out to be a fruitful idea,
both theoretically and computationally.

Definition 3.4. For a given utility U , a reference level v and for a risky asset with
excess return X we define the normalized optimal portfolio β̂ as the optimal risky
investment α̂ per unit of local relative risk tolerance at the reference wealth:

β̂ = A(v)Ŵ = R(v)α̂. (3.21)

We also define a normalized certainty equivalent gain, which we call the investment
potential, as the percentage increase in certainty equivalent wealth per unit of risk
tolerance:

IP := A(v)(CE(α̂) − v) = R(v)
CE(α̂) − v

v
. (3.22)

It transpires that the normalized quantities can be computed by means of a nor-
malized utility that we define next.
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Figure 3.4. Dependence of optimal risky investment on local relative risk aversion.

Definition 3.5. Consider v such that U ′(v) > 0 and U ′′(v) < 0. We say that f
given by the formula

f (z) := c1U(v + z/A(v)) + c2, (3.23)

with

c1 := A(v)

U ′(v)
, c2 := −c1U(v), (3.24)

is a normalized utility to U at v.

Intuitively, the normalized utility f maps risk-free wealth v to 0 in such a way
that we achieve unit risk aversion at 0:

−f ′′(0)
f ′(0)

= 1.

This is true regardless of the values of c1 and c2. We pick c1 and c2 conveniently to
obtain f (0) = 0 and f ′(0) = 1.

Proposition 3.6. Consider a utility function U satisfying the conditions of Theo-
rem 3.3, a reference wealth v satisfying U ′(v) > 0, U ′′(v) < 0, and the corre-
sponding normalized utility f . Assume that X is an R

n-valued bounded excess
return distribution admitting no arbitrage. Then

β̂(X) = arg max
β∈Rn

E[f (βX)],

IP(X) = f−1(E[f (β̂X)]).

Proof. See the end-of-chapter notes.
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3.5.1 Normalized HARA Utility

The usefulness of the normalized quantities stems from the fact that the normalized
HARA utility does not depend on either v or V̄ .

Proposition 3.7. Consider a HARA utility with parameters γ, V̄ ∈ R and reference
level v satisfying HARA′

γ,V̄
(v) > 0. The normalized utility is independent of V̄ and

v and it is given by

fγ (z) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 + z/γ )1−γ − 1

1/γ − 1
for γ > 0, γ �= 1,

ln(1 + z) for γ = 1,

|1 + z/γ |1−γ − 1

1/γ − 1
for γ < 0.

(3.25)

The function fγ (z) has a pointwise limit as γ → ±∞ and this limit is given by

f∞(z) := 1 − e−z.

The function f∞ is the normalized utility to the constant absolute risk aversion
utility CARAa for any a > 0 and any v ∈ R.

Proof. See the end-of-chapter notes.

As a consequence of Proposition 3.6, the investment potential as well as the
normalized optimal investment in the HARA class are independent of v, V̄ , and
for γ ∈ (−∞, 0) ∪ (0,∞] we obtain

β̂γ (X) = arg max
β∈Rn

E[fγ (βX)] (3.26)

IPγ (X) = f−1
γ (E[fγ (β̂γ (X)X)]). (3.27)

Recall that limγ→∞ fγ = f∞ corresponds to exponential utility. Subject to tech-
nicalities we have

lim
γ→∞ β̂γ (X) = β̂∞(X),

lim
γ→∞ IPγ (X) = IP∞(X),

which means that for large γ the normalized optimal investment generated by
power utility (CRRAγ ) is indistinguishable from the normalized optimal invest-
ment of exponential utility.

3.5.2 Numerical Example: Scaling Properties

How is the normalized utility used in practice? Typically, one constructs a numeri-
cal procedure, called say HARAmax, that maximizes the normalized HARA utility
in (3.25), and returns the maximum investment potential IPγ and the normalized
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optimal investment β̂γ . The inputs are the coefficient gama determining the nor-
malized utility in (3.25) (please note that gamma is a name of a special function
in MATLAB and should not be used to name a variable), the values of excess re-
turn X, and the probability distribution of excess returns p. For example, to solve
Example 3.1 in MATLAB we would set

gama = 5;

X = [0.18 -0.12];

p = [0.5 0.5];

and run the command

[IP,beta] = HARAmax(X,p,gama,10ˆ-7)

which produces

IP(X) = 0.020 253, (3.28)

β̂(X) = 1.361 85. (3.29)

If we wish to recover the optimal investment as a proportion of initial wealth, then
by virtue of (3.29) and (3.21),

α̂ = β̂

R(v)
= 1.361 85

5
= 0.272 37,

which is exactly what we had found in (3.16).
The certainty equivalent of the risky investment is easily found from (3.28) and

(3.22):

CE = (1 + IP/R(v))v

= (1 + 0.020 253/5) × 1 220 000 = 1 224 942.

Again, this is exactly what we have discovered in (3.20). The use of the normalized
utility is illustrated in the MATLAB programme chapter3sect5a.m.

3.5.3 Numerical Example: Invariance of Investment Potential

We found in Section 3.5.1 that the investment potential only depends on the shape
parameter γ and the distribution of asset returns. It turns out that in many cases
the dependence on γ is quite weak, confirming our initial observations that the
dependence of certainty equivalent gain on local risk tolerance is approximately
linear.

Consider the distribution of returns from Example 3.1. In the previous section
we have calculated the investment potential and portfolio decision corresponding to
γ = 5. Let us repeat this exercise for a range of γ values from 0.5 to ∞. The results
are shown in Table 3.1 and can be generated by running the MATLAB program
chapter3sect5b.m.

We can see in Table 3.1 that the optimal portfolio choice for this risky asset is
consistently around 1.36 and that the investment potential is between 2 and 2.1%
for all values of γ . For symmetric risks with small investment potential it is always
the case that γ plays a small role.
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Table 3.1. Optimal portfolio choice and the resulting investment potential for HARA utility
functions with different values of parameter γ . Asset returns are taken from Example 3.1.

γ 0.5 1 2 5 15 ∞
β̂γ 1.389 1.389 1.375 1.362 1.355 1.352
IPγ 0.0208 0.0206 0.0204 0.0203 0.0202 0.0201

V

U(V)

V
-

Figure 3.5. Every quadratic utility has a bliss point, here V̄ , beyond which the utility de-
creases with increasing wealth. The decreasing part contradicts our assumption that investors
prefer more wealth to less.

Essentially, for small symmetric risks all utility functions behave like a quadratic
utility described in Section 3.6. Section 3.7 shows that the investment potential
measured by the quadratic utility is closely related to a widely used performance
measure, the Sharpe ratio. The parameter γ only comes into play when asset returns
are highly asymmetric; we illustrate this phenomenon in Section 3.10 with the
example of mispriced options.

3.6 Quadratic Utility

Closed-form solutions to optimal investment problems are more of an exception
than the rule. The quadratic utility is the only case that can be solved in closed form
in full generality when markets are incomplete. The quadratic utility is important
for another reason: its certainty equivalent is closely linked to a widely used perfor-
mance measure, the Sharpe ratio. These rather attractive properties are outweighed
by a significant drawback: the quadratic utility is not increasing for all levels of
wealth.

Quadratic utility is a member of the HARA class for γ = −1:

HARA−1,V̄ (V ) = − (V̄ − V )2

2
.

The parameter V̄ plays the role of a bliss point, as shown in Figure 3.5.
One might hope that if V̄ is set to be sufficiently far from the risk-free wealth v,

then one is unlikely to reach the declining part of the utility function. This hope is a
false hope. We will examine this point in more detail in Section 3.7.2. Essentially,
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the position of the bliss point relative to the risk-free wealth determines an investor’s
relative risk aversion. As the bliss point V̄ moves away from the risk-free wealth, the
aversion to risk decreases and the investor takes on a proportionally larger position
in the risky asset. As a result, the probability that the wealth resulting from the
optimal investment exceeds the bliss point level does not depend on the relative
position of v and V̄ .

From (3.6) and (3.10) with γ = −1 and v < V̄ we obtain

R(v) = (V̄ /v − 1)−1. (3.30)

For example, we obtain relative risk aversion R(v) = 1 when V̄ = 2v, whereas
we have R(v) = 5 when V̄ is just 20% higher than the risk-free wealth v.

3.6.1 Normalized Quadratic Utility

Using the previously established results the normalized quadratic utility reads

f−1(z) = − (1 − z)2 − 1

2
= z − z2

2
. (3.31)

Since the quadratic utility is non-monotonic, mathematically there is ambiguity
about what we mean by an inverse function. As economists, we know that the
utility levels should be mapped to the wealth levels corresponding to the domain
where f−1 is increasing; in other words, we choose

f−1
−1 (u) = 1 − √

1 − 2u, (3.32)

as opposed to 1 + √
1 − 2u.

3.6.2 Optimal Investment and Investment Potential

To find the normalized optimal investment β̂−1(X) we need to solve

max
β∈R

E(f−1(βX)) = max
β∈R

{E[βX] − E[(βX)2]/2}
= max

β∈R

{β E[X] − β2 E[X2]/2}. (3.33)

The first-order conditions read

0 = E[X] − β̂ E[X2], (3.34)

yielding

β̂−1(X) = E[X]
E[X2] . (3.35)

Now substitute the optimal portfolio decision (3.35) into the expression for expected
utility (3.33),

û−1(X) = max
β∈R

−E[(1 − βX)2] − 1

2

= β̂−1(X)E[X] − (β̂−1(X))2 E[X2]/2 = 1

2

(E[X])2

E[X2] , (3.36)
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and substitute the maximum utility into the expression for the investment potential
(3.27) using the inverse quadratic utility (3.32):

IP−1(X) = f−1
−1 (û−1(X)) = 1 −

√
1 − (E[X])2

E[X2] . (3.37)

Returning to the numerical example of Section 3.5.3, the optimal investment
dictated by a quadratic utility is

β̂−1(X) = E[X]
E[X2] = 0.5(0.18 − 0.12)

0.5(0.182 + 0.122)
= 1.282

compared with β̂γ of around 1.37 in Table 3.1. The investment potential generated
by a quadratic utility is

IP−1 = 1 −
√

1 − (E[X])2

E[X2] = 1 −
√

1 − 0.52(0.18 − 0.12)2

0.5(0.182 + 0.122)
= 0.0194,

compared with an IPγ in Table 3.1 of around 0.02.

3.7 The Sharpe Ratio

Equation (3.33) shows that assets with the same value of

1 − (E[X])2

E[X2] (3.38)

will lead to the same improvement in expected quadratic utility. Practitioners like
to work with the expected excess return µX = E[X] and the variance of the excess
return σ 2

X = E[X2] − (E[X])2; let us therefore express (3.38) in terms of these two
quantities:

1 − (E[X])2

E[X2] = E[X2] − (E[X])2

E[X2] − (E[X])2 + (E[X])2

= σ 2
X

σ 2
X + µ2

X

= 1

1 + (µX/σX)2 . (3.39)

We can now see that the certainty equivalent wealth depends on the risky return
through µX/σX; this quantity is known as the Sharpe ratio of the risky return and
is denoted SR(X).

The Sharpe ratio is closely related to quadratic utility; there is a one-to-one
relationship between the maximum quadratic utility attainable in a market and
the market Sharpe ratio:

IP−1(X) = 1 −
√

1 + SR2(X). (3.40)

For small values of the Sharpe ratio we obtain the asymptotic expansion

IP−1(X) = 1
2 SR2(X) + o(SR2(X)). (3.41)
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Table 3.2. Asset A stochastically dominated by asset B.

Probability 1
6

1
2

1
3

Excess return of asset A −1% 1% 2%
Excess return of asset B −1% 1% 11%

Equation (3.36) implies that minβ∈R E[(1 − βX)2] = 1 − (E[X])2/E[X2]. By
substituting in the result (3.39) we obtain an important variational formula for the
Sharpe ratio:

1

1 + SR2(X)
= min

β∈R

E[(1 − βX)2]. (3.42)

3.7.1 Problems with the Standard Sharpe Ratio

Consider two assets A and B with excess returns as given in Table 3.2. Asset B
performs no worse than asset A in all states; one would therefore expect the Sharpe
ratio of B to outperform the Sharpe ratio of A, because any investor is better off
using asset B rather than asset A.

Let us now calculate the two Sharpe ratios. For asset A we have

E[XA] = −1 × 1
6 + 1 × 1

2 + 2 × 1
3 = 1,

E[X2
A] = (−1)2 × 1

6 + 12 × 1
2 + 22 × 1

3 = 2,

σ 2
XA

= E[X2
A] − (E[XA])2 = 1,

SR(XA) = E[XA]
σXA

= 1
1 = 1,

and for asset B we obtain

E[XB] = −1 × 1
6 + 1 × 1

2 + 11 × 1
3 = 4,

E[X2
B] = (−1)2 × 1

6 + 12 × 1
2 + 112 × 1

3 = 41,

σ 2
XB

= E[X2
B] − (E[XB])2 = 41 − 42 = 25,

SR(XB) = E[XB]
σXB

= 4
5 = 0.8.

Surprisingly, as measured by the Sharpe ratio, asset B appears less attractive than
asset A: SR(XB) < SR(XA)!

3.7.2 The Bliss Point Condition

The previous example illustrates that the Sharpe ratio is not a good reward-for-risk
measure; its relationship with the quadratic utility (3.42) explains why this is the
case. A quadratic utility has a bliss point: one is penalized for achieving wealth
beyond this point. The normalized utility (3.31) has a bliss point at 1. One will not
incur the penalty as long as the optimal wealth does not exceed the bliss point:

β̂−1(X)X � 1. (3.43)
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Now substitute from (3.35) into (3.43), to express the optimal wealth purely in terms
of the excess return:

E[X]
E[X2]X � 1, (3.44)

or
E[X]X � E[X2]. (3.45)

Let us denote by xmax the highest possible value of the excess return and by xmin
the lowest possible value of the excess return and restate the bliss point condition
(3.45) in terms of xmax and xmin:

E[X]xmax � E[X2] if E[X] > 0, (3.46)

E[X]xmin � E[X2] if E[X] < 0. (3.47)

Most of the time one deals with risky assets that have positive risk premiums,
E[X] > 0; therefore, the bliss point condition usually takes the form (3.46).

Let us examine assets A and B in the light of the bliss point condition (3.46). For
asset A the bliss point condition is satisfied,

E[XA]︸ ︷︷ ︸
1

xA max︸ ︷︷ ︸
2

� E[X2
A]︸ ︷︷ ︸

2

,

whereas for asset B it is violated,

E[XB]︸ ︷︷ ︸
4

xB max︸ ︷︷ ︸
11

�� E[X2
B]︸ ︷︷ ︸

41

.

The optimal wealth in market A does not extend beyond the bliss point, whereas
in market B it does. This is why asset A achieves a higher Sharpe ratio than the
unambiguously more attractive asset B.

To conclude, as long as β̂−1(X)X � 1, the Sharpe ratio is a meaningful reward-
for-risk measure. For excess returns that do not meet the condition (3.43), the
optimal wealth will go beyond the bliss point and the expected quadratic utility
will therefore understate the true value of the investment to an individual who
prefers more to less. By virtue of (3.42), the Sharpe ratio, as an equivalent expres-
sion of expected utility, will understate the true investment potential associated
with the risky asset.

3.8 Arbitrage-Adjusted Sharpe Ratio

We concluded in the previous section that the expected quadratic utility is made
worse by all states in which the excess return X exceeds E[X2]/E[X]. One can
alleviate this problem by performing the following thought experiment.

The investor will increase her expected utility by setting aside part of her wealth
when returns are high (when her wealth exceeds the bliss point). Suppose the
investor sets aside that part of the excess return which exceeds the value of xcap.
Effectively, we now have a new distribution of the excess return Xcap such that
max(Xcap) = xcap. Let us perform the optimal investment analysis with Xcap
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Table 3.3. Distribution of an excess return X.

x −25% −15% −5% 5% 15% 25% 35%
P(X = x) 0.01 0.04 0.25 0.40 0.25 0.04 0.01

Table 3.4. Decomposition of excess return into the arbitrage
component and the maximum Sharpe ratio component.

Xcap −25% −15% −5% 5% 15% 24.04% 24.04%
X − Xcap 0% 0% 0% 0% 0% 0.96% 10.96%

x −25% −15% −5% 5% 15% 25% 35%
P(X = x) 0.01 0.04 0.25 0.40 0.25 0.04 0.01

instead of X. The Sharpe ratio determining the maximum expected quadratic utility
is given by

(E[Xcap])√
E[X2

cap] − (E[Xcap])2
(3.48)

and the bliss point condition becomes

xcapE[Xcap] � E[X2
cap]. (3.49)

At the beginning the investor will setxcap atxmax. If the bliss point condition (3.49)
is satisfied, the standard Sharpe ratio is an appropriate reward-for-risk measure.
If, however, (3.49) is violated, then setting xcap a little lower will improve the
Sharpe ratio in (3.48), because we will only dispose of wealth above the bliss point.
Intuitively, the investor should stop lowering the truncation point xcap as soon as

xcapE[Xcap] = E[X2
cap]. (3.50)

At this point one has decomposed the original excess return X into two parts,

X = Xcap + (X − Xcap), (3.51)

where X −Xcap is the non-negative amount of money one is setting aside and Xcap

achieves the highest possible Sharpe ratio without requiring extra resources. We
can think of Xcap as the pure Sharpe ratio component and of (X −Xcap) as the pure
arbitrage component of X.

For E[X] > 0 we define the arbitrage-adjusted Sharpe ratio SRm(X) as the max-
imum standard Sharpe ratio SR(Xcap) over all capped return distributions satisfying
the condition (3.49). The definition for E[X] < 0 is analogous but we truncate from
below and look for the minimal Sharpe ratio (i.e. the one with the largest negative
value). We use the notation SRm because the arbitrage-adjusted Sharpe ratio is
monotone:

SRm(XA) � SRm(XB) if XA � XB.
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Example 3.8. Consider a risky security with the distribution of the excess return
as given in Table 3.3. Find the Sharpe ratio and the arbitrage-adjusted Sharpe ratio
of this security and decompose its excess return into the pure Sharpe ratio and the
pure arbitrage part.

Solution.

E[X] = −25 × 0.01 − 15 × 0.04 − 5 × 0.25 + 5 × 0.4

+ 15 × 0.25 + 25 × 0.04 + 35 × 0.01

= 5.0,

E[X2] = 252 × 0.01 + 152 × 0.04 + 52 × 0.25 + 52 × 0.4

+ 152 × 0.25 + 252 × 0.04 + 352 × 0.01

= 125.0.

The standard Sharpe ratio is

SR(X) = 5√
125 − 52

= 0.5.

Now let us examine the bliss point condition (3.46),

xmax︸︷︷︸
35

E[X]︸︷︷︸
5

�� E[X2]︸ ︷︷ ︸
125

.

In the present case the optimal wealth exceeds the bliss point. We will guess that
the optimal truncation point xcap occurs below 25% and find xcap from the condition
(3.50). First we must evaluate E[Xcap],

E[Xcap] = −25 × 0.01 − 15 × 0.04 − 5 × 0.25 + 5 × 0.4 + 15 × 0.25

+ xcap × 0.04 + xcap × 0.01

= 3.65 + 0.05xcap, (3.52)

then evaluate E[X2
cap],

E[X2
cap] = 252 × 0.01 + 152 × 0.04 + 52 × 0.25 + 52 × 0.4

+ 152 × 0.25 + x2
cap × 0.04 + x2

cap × 0.01

= 87.75 + 0.05x2
cap,

and finally solve for xcap from (3.50),

xcapE[Xcap] = E[X2
cap],

xcap(3.65 + 0.05xcap) = 87.75 + 0.05x2
cap,

xcap = 87.75

3.65
= 24.041.
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This means that all the returns in excess of 24.04% should be set aside into an
arbitrage fund. The decomposition into the pure Sharpe ratio and the pure arbitrage
part is given in Table 3.4.

The arbitrage-adjusted Sharpe ratio is

SRm(X) = SR(Xcap) = E[Xcap]√
E[X2

cap] − (E[Xcap])2
.

This can be simplified by substituting for X2
cap from (3.50) and dividing both the

numerator and denominator by E[Xcap]
SRm(X) = 1√

(xcap/E[Xcap]) − 1
. (3.53)

It remains to evaluate E[Xcap] from (3.52)

E[Xcap] = 3.65 + 0.05 × 24.041 = 4.852

and substitute this value into (3.53) to find the arbitrage-adjusted Sharpe ratio,

SRm(X) = 1√
(24.041/4.852) − 1

= 0.503.

3.8.1 Arbitrage-Adjusted Sharpe Ratio and Truncated Quadratic Utility

To formalize the intuition behind the arbitrage-adjusted Sharpe ratio let us consider
quadratic utility truncated after the bliss point (see Figure 3.6). The truncation in the
utility function means that the investor is neither penalized nor rewarded for having
wealth above V̄ ; therefore the truncation acts as if the investor is setting aside all
the wealth above V̄ .

Mathematically, we define monotone HARA utility for γ < 0 as follows:

HARAγm,V̄ (V ) := | max(V̄ − V, 0)|1−γ

1 − γ
.

As we did in Proposition 3.7 we find that the normalized utility is independent of v
and V̄ and it reads

fγm(z) = | max(1 + z/γ, 0)|1−γ − 1

1/γ − 1
,

with corresponding normalized optimal investment β̂γm and investment poten-
tial IPγm: given by Proposition 3.6.

Recall from (3.42) that the standard Sharpe ratio SR(X) is related to quadratic
utility maximization as follows:

min
β∈R

E[(1 − βX)2] = 1

1 + SR2(X)
.
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V

U(V)

V-

Figure 3.6. Truncated quadratic utility.

For the monotone arbitrage-adjusted Sharpe ratio SRm(X) we will obtain, analo-
gously,

min
β∈R

E[(max(1 − βX, 0))2] = 1

1 + SR2
m(X)

. (3.54)

The decomposition X = Xcap+X−Xcap discussed in equation (3.51) is determined
by the arbitrage-adjusted risky share β̂−1m. Specifically, the optimal investment will
reach the bliss point where β̂−1mX = 1; therefore xcap is given by

xcap = 1/β̂−1m. (3.55)

It can be shown that xcap from (3.55) is the same as xcap implied by (3.50); in fact,
(3.50) is the first-order condition for the maximization of the expected truncated
quadratic utility in (3.54), provided that xcap < xmax. While (3.50) is very intuitive,
it only applies in situations with one risky asset. With multiple risky assets the first-
order conditions become too complicated to provide useful intuition and we have
to rely on the equivalent formulation (3.54). Truncation of the utility unfortunately
means that closed-form solutions are no longer available and that one has to use
numerical techniques (see Chapter 4).

3.9 The Importance of Arbitrage Adjustment

How much does it matter whether one uses the Sharpe ratio or the arbitrage-adjusted
Sharpe ratio? Example 3.8 has shown that for investment in equities the difference is
negligible, both in terms of investment decisions (β̂−1 = 1/0.25, β̂−1m = 1/0.2404)
and in terms of certainty equivalents (SR(X) = 0.5, SRm(X) = 0.503).

The situation is very different when dealing with mispriced options. Suppose an
investor buys an at-the-money call option on the Nikkei 225 Index, maturing in one
year. The payoff of the option is max(R − 1, 0), where R is the annual return on
the Nikkei 225. Suppose the investor believes that the distribution of the Nikkei
225 annual returns is identical to the historical distribution depicted in Figure 3.7.
When the option price is very low the option return will be strongly skewed towards
high values and the bliss point condition is likely to be violated.

To examine this effect we will consider a range of prices for the option, the highest
being the Black–Scholes value and the lowest being −1/10 of the Black–Scholes
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Figure 3.7. Histogram of annual real returns 1960–2000, year on year, monthly data.

Table 3.5. The standard Sharpe ratio understates the true investment potential of underpriced
options. β̂−1-portfolio choice without arbitrage adjustment, β̂−1m-portfolio choice with
arbitrage adjustment.

Arbitrage BS value
Option price −0.0048 0.0048 0.0241 0.0361 0.0433 0.0481

β̂−1 −0.0158 0.0150 0.0632 0.0800 0.0838 0.0832
β̂−1m −0.9804 0.0458 0.0895 0.0933 0.0900 0.0872
SR(β̂−1) 0.645 0.574 0.432 0.344 0.291 0.256
SRm(β̂−1) 0.698 0.612 0.447 0.350 0.293 0.257
SRm(β̂−1m) ∞ 0.716 0.462 0.352 0.294 0.257

price. The lower the option price the higher the skew in option returns and the
more divergence between the standard and arbitrage-adjusted Sharpe ratio. The
resulting investment decisions and their value in terms of Sharpe ratios are reported
in Table 3.5. The necessary computations are implemented in the MATLAB program
chapter3sect9.m (detailed discussion of the computational techniques can be found
in Chapter 4).

One should think of the Black–Scholes value as the ‘fair’ value of the option. We
observe that when the option is valued fairly (see the last column of Table 3.5) there
is very little difference between the standard Sharpe ratio and the arbitrage-adjusted
Sharpe ratio and the corresponding portfolio decisions are virtually the same. In
contrast, in the second column the option is severely underpriced, and here the
Sharpe ratio is a very poor guide to the true investment potential of the option.

There are two ways in which the standard Sharpe ratio understates the investment
potential of the option. Firstly, it chooses the wrong β, we invest less money in the
option than we should because we are selecting β using the wrong criterion (the
Sharpe ratio instead of the arbitrage-adjusted Sharpe ratio). This results in a lower
arbitrage-adjusted Sharpe ratio, SRm(β̂−1) < SRm(β̂−1m). For example, in the
second column of Table 3.5 the investment maximizing Sharpe ratio is β̂−1 = 0.015,
whereas the risky investment maximizing the arbitrage-adjusted Sharpe ratio is three
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Table 3.6. HARA investment potential of a fairly priced option.

(Option price)/(Black–Scholes value) = 1
γ −1m 1 2 5 15 ∞
β̂γ 0.145 0.242 0.223 0.209 0.202 0.198

IPγ (β̂−1m) 0.041 0.052 0.050 0.049 0.049 0.048
IPγ 0.041 0.061 0.057 0.054 0.052 0.052

times as high, β̂−1m = 0.0458. The suboptimal investment represents a drop in
arbitrage-adjusted Sharpe ratio from 0.716 to 0.612.

Secondly, the standard Sharpe ratio makes any choice of β look worse than it
actually is because the standard Sharpe ratio quite unreasonably penalizes high
returns, SR(β̂−1) < SRm(β̂−1). For example, in the second column of Table 3.5
we have a standard Sharpe ratio of SR(β̂−1) = 0.574; however, if we decomposed
the wealth generated by the investment β̂−1 = 0.015 into the pure Sharpe ratio part
and the pure arbitrage part, we would realize that its pure Sharpe ratio part has a
value of SRm(β̂−1) = 0.612. This could mean that a project with positively skewed
returns may be rejected in favour of a less profitable project that does not exhibit
skewed returns.

Matters come to a head when the option price is negative, say −1/10 of the Black–
Scholes price (see the first column of Table 3.5). The investor is now paid to hold the
option. The Sharpe ratio does not notice the arbitrage opportunity, it collects only
1.58% of the risk-free wealth from the option premium and achieves a lowly value
of SR(β̂−1) = 0.645. The arbitrage-adjusted Sharpe ratio, however, adopts a much
more reasonable strategy: it collects option premiums worth 98.04% of risk-free
wealth and achieves the princely level of SRm(β̂−1m) = ∞, that is, it correctly
reports that the pure Sharpe ratio part of this investment strategy is non-negative
and risk-free.

3.10 Portfolio Choice with Near-Arbitrage Opportunities

The truncated quadratic utility is an improvement on the standard quadratic utility,
because it does not penalize high values of wealth, but it still exhibits too much risk
aversion when near-arbitrage opportunities are available. In this section we will
examine portfolio choices generated by the HARA class of utility functions with
different values of γ .

In Table 3.6 the option is valued at the Black–Scholes price and its return ex-
hibits a relatively weak skew. The truncated quadratic utility reports the smallest
investment potential of 4.1%, whereas the log utility reports the highest figure of
6.1%. These differences are very small if we note that the arbitrage-adjusted Sharpe
ratio investment delivers an investment potential of 5.2% to a log utility investor
and that these figures correspond to unit local risk aversion. A typical investor has a
local risk aversion of 5 so that the resulting increase in certainty equivalent of a log
investor who uses a suboptimal quadratic portfolio is 5.2%/5 = 1.04%, whereas
the optimal portfolio delivers 6.1%/5 = 1.22%.
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Table 3.7. HARA investment potential of an underpriced option.

(Option price)/(Black–Scholes value) = 0.5
γ −1m 1 2 5 15 ∞
β̂γ 0.154 0.436 0.368 0.314 0.289 0.278

IPγ (β̂−1m) 0.142 0.227 0.214 0.204 0.199 0.197
IPγ 0.142 0.362 0.295 0.255 0.239 0.231

Table 3.8. HARA investment potential of a severely underpriced option.

(Option price)/(Black–Scholes value) = 0.1
γ −1m 1 2 5 15 ∞
β̂γ 0.079 0.563 0.343 0.226 0.190 0.174

IPγ (β̂−1m) 0.289 0.759 0.663 0.588 0.551 0.532
IPγ 0.289 2.189 1.128 0.771 0.663 0.617

The situation is more dramatic when we price the option at half of its fair value
(see Table 3.7). Now the portfolio maximizing arbitrage-adjusted quadratic utility
is 0.15, while the optimal log utility portfolio at 0.44 is almost three times as high.
Because the option is now much more attractive, the risky investment in Table 3.7
exceeds the risky investment in Table 3.6.

Suppose the option is sold at 10% of its fair value, which means the option
is almost an arbitrage opportunity and its return is skewed severely towards high
values. The portfolio choices are depicted in Table 3.8. An interesting phenomenon
occurs. For all utility functions, apart from the log utility, the proportion of money
invested in the option drops, even though the option is five times cheaper than it
was in Table 3.7. To appreciate what is happening one must look at the distribution
of terminal wealth corresponding to Table 3.8. This can be done by running the
MATLAB program chapter3sect10.m. The log investor is giving up 11.5% of her
safe wealth with probability 40% to have a 60% chance of increasing her wealth
by 50% or more, whereas a HARA investor with γ = 2 only gives up 7% of her
wealth with probability 40% to have a 60% chance of increasing her wealth by 30%
or more.

The different level of aggressiveness can be seen more graphically when the
option price drops further to almost zero, as shown in Table 3.9. The portfolio
weights generated by all the utility functions, apart from the log utility, now seem
inadequately small. However, the situation looks different when one examines
the resulting wealth distributions. Essentially, a log investor keeps the downside
exposure constant (in our case she stands to lose 12% of her safe wealth with
probability 40%) and makes her upside earning potential very high (at least a 68-fold
increase in wealth with probability 60%). On the other hand, a HARA investor with
γ = 2 will increase the upside potential by a smaller amount and at the same time
lower the downside exposure, giving up only 1.2% of her wealth with probability
40% in compensation for a 60% chance to increase her wealth 7.6 times or more.
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Table 3.9. HARA investment potential of a near-arbitrage opportunity.

(Option price)/(Black–Scholes value) = 0.001
γ −1m 1 2 5 15 ∞
β̂γ 0.002 0.590 0.058 0.016 0.010 0.009

IPγ (β̂−1m) 0.368 1.570 1.211 0.955 0.845 0.793
IPγ 0.368 48.669 2.726 1.268 1.006 0.911

3.11 Summary

• When large sums are at stake investors appear to be risk averse, putting more
weight on downside deviations from average wealth than on equally likely
upside deviations. This attitude to risk can be captured using a concave and
increasing function, called the utility function. The HARA class of utility
functions is particularly useful:

HARAγ,V̄ (V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(V̄ + V )1−γ

1 − γ
for γ > 0, γ �= 1, V > −V̄ ,

|V̄ − V |1−γ

1 − γ
for γ < 0.

• There are two mathematical measures of risk aversion for small risks: the
coefficient of absolute risk aversion

A(v) = −U ′′(v)
U ′(v)

;
and the coefficient of relative risk aversion

R(v) = vA(v).

To accept a small, additive, zero-mean risk with variance σ 2, an expected
utility investor requires risk-free compensation A(v)σ 2.

• The quantity 1/R(v) is called the relative risk tolerance.

• The optimal portfolio allocation problem with a risk-free asset and n risky
assets can be written as follows:

sup
α∈Rn

E[U(v(1 + αX)].

Here v is the investor’s risk-free reference wealth, α is the proportion of v

invested in the risky assets, and X is the excess return of the risky assets.

• Under the assumption of no arbitrage the optimal portfolio exists if v lies
on the increasing part of the utility function and the slope of U at ∞ is (if
positive) negligible compared with the slope of U at −∞. Mathematically
we need

limx→∞ U ′+(x)

limx→−∞ U ′−(x)
� 0.
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• For a particular choice of risky investment α we measure the welfare of an
investor by the certainty equivalent wealth CE(α), which is the risk-free level
of wealth whose utility equals the expected utility of the risky investment:

U(CE(α)) = E[U(v(1 + αX))].
Mathematically we can express the certainty equivalent using the inverse
utility function:

CE(α) = U−1(E[U(v(1 + αX))]).
• The optimal investment α̂ and the corresponding certainty equivalent increase

CE(α̂) − v are approximately inversely proportional to the relative risk aver-
sion R(v). It therefore makes sense to report these quantities normalized per
unit of risk tolerance:

β̂(X) := α̂R(v),

IP(X) := CE(α̂) − v

v
R(v).

The second expression signifies the percentage increase in certainty equivalent
wealth per unit of risk tolerance. We have called this quantity the investment
potential of the risky excess return X.

• The normalized quantities can be computed by means of a normalized utility
defined in (3.23). In the HARA class the normalized utility is independent of
v and V̄ and it is given by

fγ (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + z/γ )1−γ − 1

1/γ − 1
for γ > 0, γ �= 1,

|1 + z/γ |1−γ − 1

1/γ − 1
for γ < 0.

Consequently, the investment potential and the normalized optimal portfolio
only depend on γ and not on v or V̄ .

• For relatively unattractive investment opportunities the investment potential
(almost) does not depend on γ .

• The normalized HARA utility has well-defined limits for γ → 1 and γ →
±∞ and we obtain

f1(z) := lim
γ→1

fγ (z) = ln(1 + z),

f∞(z) := lim
γ→±∞ fγ (z) = 1 − e−z.

As a result, the investment potential generated by CRRA utility is indistin-
guishable from the investment potential of exponential utility when |γ | is
large.

• Quadratic utility is a member of the HARA class with γ = −1. For all
practical purposes it represents the only case that can be solved in closed
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form when markets are incomplete:

β̂−1(X) = E[X]/E[X2],
IP−1(X) = 1 −

√
1 − (E[X])2/E[X2].

• The Sharpe ratio is a popular reward-for-risk measure. It is computed as the
ratio of the mean excess return of a risky security to the standard deviation
of that return. The Sharpe ratio is closely related to the certainty equivalent
wealth of the quadratic utility investor:

IP−1(X) = 1 −
√

1 + SR2(X).

By Taylor expansion,

IP−1(X) ≈ SR2(X)

2
when the Sharpe ratio is small.

• The Sharpe ratio is not a good reward-for-risk measure when returns are
asymmetric or exhibit fat tails. In such cases the Sharpe ratio can actually get
worse as the distribution of returns improves. To remedy this problem one
can monitor the bliss point of quadratic utility and decompose excess returns
into a pure Sharpe ratio part (below the bliss point) and a pure arbitrage part
(above the bliss point). Computationally this procedure can be carried out
by maximizing the truncated quadratic utility. The pure Sharpe ratio then
replaces the standard Sharpe ratio as a monotone reward-for-risk measure.
We have called the new measure the arbitrage-adjusted Sharpe ratio.

3.12 Notes

Von Neumann and Morgenstern (1944) proposed ranking of risky investment op-
portunities by expected utility. Markowitz (1952) is a first practical application of
quadratic utility in portfolio selection. A number of authors have examined and
confirmed the robustness of portfolio choice implied by different utility functions
(see Grinold 1999; Kallberg and Ziemba 1983; Kroll et al. 1984; Pulley 1981). The
bliss-point condition for quadratic utility was first examined in Wippern (1971). The
HARA class of utility functions appears in Ingersoll (1987), who also shows that the
exponential utility is obtained in the limit γ → ∞. Brooks et al. (2006) compute
optimal hedge ratios generated by HARA utilities for a wide range of commodities
and provide proofs of Propositions 3.6 and 3.7.

The use of the Sharpe ratio as a performance evaluation measure was suggested
in Sharpe (1966). The undesirable properties of Sharpe ratio and its generalization
in the sense of changing the utility function from quadratic to another (exponential)
appear in Hodges (1998). The arbitrage-adjusted Sharpe ratio and the HARA class
Sharpe ratios appear in Černý (2003). Cochrane and Saá-Requejo (2000) find option
price bounds based on the absence of high arbitrage-adjusted Sharpe ratios. Mono-
tonization of mean-variance preferences is suggested in Maccheroni et al. (2007).
Černý et al. (2008) study the link between optimal portfolios generated by expected
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utility and those generated by variational preferences (such as the mean-variance
preference). The proof of Theorem 3.3 can be found here.

Dowd (1999) uses the term generalized Sharpe ratio for the quadratic utility with
multiple assets, in the following sense. Suppose one already holds asset X and in
addition one has to decide between buying asset Y or Z. Then Y is more attractive
thanZ if SR(X, Y ) > SR(X,Z). The quantity SR(X, Y ) is, in Dowd’s terminology,
the generalized Sharpe ratio of Y .

3.13 Exercises

Exercise 3.1 (calibrating risk aversion). Suppose we do not know the relative
risk aversion of our investor. We know, however, that her financial situation is the
same as in Example 3.1 and that the available assets display the same characteristics.
Furthermore, we have just learned that our investor has decided to invest £300 000 in
the risky asset for one year. Assuming that her preferences are described by CRRA
utility, find her coefficient of relative risk aversion.

Exercise 3.2 (rational investor and lottery). Another investor in an identical fi-
nancial situation buys a lottery ticket for £1 with a one-in-two-million chance of
winning £1 000 000. Assuming power utility, compute her coefficient of risk aver-
sion. How much better off is this investor with the lottery ticket? How much worse
off would she be if her preferences were described by a power utility with γ = 5?

Exercise 3.3 (impact of the risk-free rate on borrowing). Consider an investor
with an initial wealth of V0 = £500, an annual income of y = £30 000 and a
CRRA utility with γ = 5. Assets are the same as in Example 3.1. Describe the
optimal investment. How does the optimal investment change if the rate for risk-free
borrowing goes up from 2 to 4% per annum?

Exercise 3.4 (utility or certainty equivalent?). We have searched for the optimal
investment by maximizing the expected utility of the corresponding wealth distri-
bution. Yet we prefer to measure the performance of an investment using the money
equivalent of the expected utility. Surely, to be consistent, we should be maximizing
the money equivalent rather than the expected utility itself! Is there a contradiction
in our approach?

Exercise 3.5 (the quadratic utility as an approximation of the power utility). Use
the histogram of the Nikkei 225 Real Annual Returns to find an optimal investment
strategy for an investor with an initial wealth of �100 000 000 and an annual income
of �10 000 000. Assume a risk-free rate of 2% and a power utility with γ = 5.
Compute the same investment decision when the power utility is approximated by
the quadratic utility. (Hint: modify the program chapter3sect5a.m by copying and
pasting the distribution of Nikkei returns from the program chapter3sect9.m.)

Exercise 3.6 (arbitrage-adjusted Sharpe ratio). Consider a risky security with
the distribution of excess return as given in Table 3.10. Using just pen and paper
find the arbitrage-adjusted Sharpe ratio of the security and decompose its excess
return into a pure Sharpe ratio part and a pure arbitrage part.
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Table 3.10. Distribution of excess returns.

x −1% 2% 11%
P(X = x) 1

3
1
3

1
3

Exercise 3.7 (certainty equivalent wealth of expected quadratic utility). Solve
the equation

(V̄ − CE(α))2 = E[(V̄ − αX)2]
for CE(α).

Exercise 3.8 (approximation of the CRRA utility by the quadratic utility). Use
a quadratic utility to approximate the CRRA utility around the risk-free wealth v.
What is the value of the local risk aversion of the approximating utility?

Exercise 3.9 (the logarithmic utility as a limit of the power utility). Find the
value of (vx − 1)/x as x approaches 0. Do this by expressing the numerator as a
first-order Taylor expansion around x = 0. Based on your result, what is the value
of

V 1−γ − 1

1 − γ

as γ approaches 1?

Exercise 3.10 (the CARA utility). Find U(V ) such that

U(V )

U(v)
= f (V − v)

for all V and v with f unspecified.

Exercise 3.11 (the CRRA utility). Find U(V ) such that

U(V )

U(v)
= f

(
V

v

)
for all V and v with f unspecified.



4
Numerical Techniques for Optimal Portfolio

Selection in Incomplete Markets

One would not need special numerical techniques if all investment decisions could
be performed using the quadratic utility. The previous chapter highlighted that
the quadratic utility is a very flexible tool that works well in many commonly
encountered market situations, particularly with equities. However, we also saw
that the quadratic utility will lead to underinvestment when security returns are
skewed, which is particularly true with mispriced options.

This chapter provides an introduction to the numerical algorithms necessary for
the analysis of optimal investment decisions with a non-quadratic utility in an in-
complete market. We used these algorithms to generate numerical examples in the
previous chapter; now we will study them in their own right.

Sections 4.1–4.3 discuss optimal portfolio selection for a CRRA agent and one
risky asset; the resulting numerical algorithm is adapted to the HARA utility in
Section 4.4. In Section 4.5 we allow for several risky assets, and finally in Section 4.6
we examine closed-form solutions to optimal portfolio selection with multiple assets
and a quadratic utility.

4.1 Sensitivity Analysis of Portfolio Decisions with the CRRA Utility

Whenever one solves optimization problems, it is very important to gauge the impact
of a small change in the choice variable (risky portfolio shareα) on the target function
(certainty equivalent of expected utility relative to risk-free wealth). The purpose
of such an exercise is twofold. Firstly, it quantifies the magnitude of the rounding
errors. If we know that a 1% change in α causes a 0.001% change in certainty
equivalent and if 0.001% precision in certainty equivalent is deemed sufficient, then
we only need to report α with precision 1%, that is, instead of α̂ = 0.272 369 . . . we
will write α̂ = 0.272. Secondly, suppose we are unable to compute α̂ quickly with
arbitrary precision (such a situation is common in practice). Sensitivity analysis
provides a tool for identifying optimal α with sufficient precision (there is more on
this topic in Section 4.2).

4.1.1 Target Function and Optimality Condition

Consider an investor with CRRA utility given in (3.5). To simplify notation it is
convenient to introduce the following function related to the expected utility:

u(α) := E[(1 + αX)1−γ ]. (4.1)
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The investor’s certainty equivalent wealth is then given by

CE(α) = v(E[(1 + αX)1−γ ])1/(1−γ ) = vu(α)1/(1−γ ), (4.2)

where α represents a portfolio choice of a CRRA investor with relative risk aver-
sion γ .

The optimal portfolio α̂ is found from the first-order condition

CE′(α̂) = 0. (4.3)

Applying a chain rule for differentiation in (4.2) we obtain

CE′(α̂) = v

1 − γ
u(α̂)γ /(1−γ )

︸ ︷︷ ︸
�=0

u′(α̂) = 0,

and consequently the optimality condition simplifies to

u′(α̂) = 0. (4.4)

The optimization of certainty equivalent amounts to the optimization of expected
utility.

4.1.2 Approximately Optimal Solution

In general it is unlikely that we will manage to solve the first-order condition (4.4)
exactly; therefore, we should try to understand the magnitude of the error if we stop
with α such that

u′(α) = ε

with ε small.
Let us first of all estimate how far α is from α̂. If ε is small, we would expect α

and α̂ to be close to each other, close enough to use a Taylor expansion of u′ around
α with high precision. This gives

u′(α̂) = u′(α) + u′′(α)(α̂ − α) + O((α̂ − α)2). (4.5)

Using (4.4) and (4.5) we solve for α̂ − α to obtain

α̂ − α = −u′(α)
u′′(α)

+ O(α̂ − α). (4.6)

This solves half of our problem. Namely, we now know that to compute α̂ with a
precision of about 10−2, we can stop our search as soon as∣∣∣∣−u′(α)

u′′(α)

∣∣∣∣ < 10−2.

4.1.3 Required Precision

But what precision is really necessary? It could be the case that even a minute
change in α makes a large impact on the certainty equivalent. We will not know
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unless we can estimate the impact of the change in α on our target function. To this
end we write down the second-order Taylor expansion of u:

u(α̂) = u(α) + u′(α)(α̂ − α) + 1
2u

′′(α)(α̂ − α)2 + O((α̂ − α)3). (4.7)

Substituting from equation (4.6) we obtain

u(α̂) = u(α) − 1

2

(u′(α))2

u′′(α)
+ O((α̂ − α)2). (4.8)

To express this result in terms of certainty equivalents we factor out u(α) on the
right-hand side and raise both sides to the power 1/(1 − γ ):

u(α̂)1/(1−γ ) = u(α)1/(1−γ )

(
1 − 1

2

(u′(α))2

u(α)u′′(α)
+ O((α̂ − α)2)

)1/(1−γ )

.

We can rewrite the right-hand side using a first-order expansion of (1 + x)1/(1−γ )

around x = 0 (see Exercise 4.1):

u(α̂)1/(1−γ ) = u(α)1/(1−γ )

(
1 − 1

2(1 − γ )

(u′(α))2

u(α)u′′(α)
+ O((α̂ − α)2)

)
.

Finally, we employ (4.2) to obtain

CE(α̂) − CE(α)

v
= −u(α)1/(1−γ )

2(1 − γ )

(u′(α))2

u(α)u′′(α)
+ O((α̂ − α)2). (4.9)

Consider a CRRA investor with relative risk aversion γ and an approximately
optimal portfolio α such that

u′(α) = ε ≈ 0.

The estimated distance of the approximately optimal portfolio from the optimal
portfolio is

α̂ − α ≈ − u′(α)
u′′(α)

, (4.10)

and the estimated difference in certainty equivalents relative to risk-free wealth
is

CE(α̂) − CE(α)

v
≈ −u(α)1/(1−γ )

2(1 − γ )

(u′(α))2

u(α)u′′(α)
=: errorCE/v(α). (4.11)

4.1.4 Numerical Example

Let us revisit Example 3.1 of the previous chapter to see how useful the two ap-
proximations (4.10) and (4.11) are. We have γ = 5, and the excess return X takes
two values, +18% or −12%, with equal probability 0.5. The expected utility is
therefore proportional to

u(α) = E[(1 + αX)1−γ ] = 0.5(1 + 0.18α)−4 + 0.5(1 − 0.12α)−4. (4.12)
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u'(   )

(n) (n+1) α

α

u'(   (n))α
(i)

(ii)

αα α optˆ

Figure 4.1. Illustration of root finding using Newton’s method. (i) The exact value of
u′(α). (ii) u′(α) = u′(α(n))+ u′′(α(n))(α − α(n)). The line represents the first-order Taylor
expansion of u′(α) around the point α(n).

We will find u′(α) and u′′(α) by direct evaluation:

u′(α) = −2(0.18(1 + 0.18α)−5 − 0.12(1 − 0.12α)−5), (4.13)

u′′(α) = 10(0.182(1 + 0.18α)−6 + 0.122(1 − 0.12α)−6). (4.14)

We have calculated the optimal investment in (3.16):

α̂ = 0.272 37.

Let us take an approximately optimal portfolio decision,

α = 0.273, (4.15)

α − α̂ = 0.000 63. (4.16)

Numerically,

CE(α̂)/v = (u(0.272 37))−1/4 = 0.844 302 514, (4.17)

CE(α)/v = (u(0.273))−1/4 = 0.844 302 496, (4.18)

u′(α) = u′(0.273) = 2.641 × 10−4,

u′′(α) = u′′(0.273) = 0.4188.

We have predicted in (4.10) that

α̂ − α = −u′(α)
u′′(α)

= −6.306 × 10−4,

while from (4.16) the true deviation is −6.3 × 10−4, a very nice match.
For the target function we have predicted in (4.11)

CE(α̂) − CE(α)

v
= 1

8

(u′(α))2

u(α)5/4u′′(α)
= 1.79 × 10−8,
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whereas in reality substituting from (4.17) and (4.18)

CE(α̂) − CE(α)

v
= 0.844 302 514 − 0.844 302 496 = 1.8 × 10−8, (4.19)

again spot on!

Equation (4.19) means the investor knows her certainty equivalent wealth to the
last penny even though (4.16) implies that she knows the amount invested in
the risky asset with a tolerance of roughly £700. It is difficult to believe that
individuals optimize their certainty equivalent with a precision of 10−8v; one
would more realistically expect a precision in the region of 10−3 to 10−5 of
risk-free wealth, which in turn means that the required precision in α is about
10−2.

Then it must be the case that individuals cannot really make up their mind about
the optimal level of α if the differences in α fall below 10−2. This has important
consequences for the calibration of risk aversion. Suppose the investor in our
example knows her CE(α)/v with precision 10−5. If, in an experiment, she claims
that her optimal level ofα is 0.273, this level can correspond toγ = 5.5 orγ = 4.5
or any value in between because for all these values α = 0.273 approximates the
certainty equivalent of the optimal decision with tolerance 10−5v.

4.2 Newton’s Algorithm for Optimal Investment with CRRA Utility

Let us stay with the introductory Example 3.1, characterized by equations (4.12)–
(4.14):

u(α) = 0.5(1 + 0.18α)−4 + 0.5(1 − 0.12α)−4,

u′(α) = −2(0.18(1 + 0.18α)−5 − 0.12(1 − 0.12α)−5),

u′′(α) = 10(0.182(1 + 0.18α)−6 + 0.122(1 − 0.12α)−6).

In contrast to the preceding section, however, let us pretend that we do not know
how to solve u′(α) = 0 in closed form. How can one get a computer to solve it?

We will concentrate on a numerical root-finding algorithm called Newton’s
method. Suppose that after n steps of the numerical procedure we have an ap-
proximate solution α(n). The idea is to approximate u′(α(n)) around α(n) using a
first-order Taylor expansion and then find the root of the approximating line instead
of finding the root of u′(α) itself (see Figure 4.1).

Mathematically, α(n+1) is described as the point on the Taylor expansion line that
crosses the horizontal axis

u′(α(n)) + u′′(α(n))(α(n+1) − α(n)) = 0, (4.20)

α(n+1) = α(n) − u′(α(n))

u′′(α(n))
. (4.21)

Note that the relationship between α(n+1) and α(n) is similar to the relationship
between α̂ and α captured in equation (4.6). We will stop the iteration as soon as
the improvement in u(α), or more precisely in the certainty equivalent of u(α), is
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negligible. Suppose we want to know the certainty equivalent with precision of
about 10−5v, then we should stop as soon as

|errorCE/v(α
(n))| < 10−5. (4.22)

Exercise 4.2 discusses other possible stopping rules.
Let us see the whole procedure in practice. A natural starting point is

α(0) = 0. (4.23)

The zero iteration gives

u(0) = 1.0,

u′(0) = −0.12,

u′′(0) = 0.468.

The error in the certainty equivalent is

errorCE/v(α
(0)) = 1

8

(−0.12)2

1.05/4 × 0.468
= 3.8 × 10−3,

and because it does not satisfy condition (4.22) we have to carry on. In the first
iteration one obtains

α(1) = α(0) − u′(α(0))

u′′(α(0))
= 0 − −0.12

0.468
= 0.2564,

u(0.2564) = 0.984 01,

u′(0.2564) = −6.705 × 10−3,

u′′(0.2564) = 0.4209,

errorCE/v(α
(1)) = 1

8

(−6.705 × 10−3)2

0.984 015/4 × 0.4209
= 1.4 × 10−5.

Since the error is larger than the tolerance we have set in (4.22), we need to compute
another iteration:

α(2) = α(1) − u′(α(1))

u′′(α(1))
= 0.2564 − −6.705 × 10−3

0.4209
= 0.2723,

u(0.2723) = 0.983 96,

u′(0.2723) = −2.557 × 10−5,

u′′(0.2723) = 0.2814,

errorCE/v(α
(2)) = 1

8

(−2.557 × 10−5)2

0.983 965/4 × 0.2814
= 3.0 × 10−10

Here the iteration ends since (4.22) is now satisfied. According to equation (4.6)
the corresponding error in α(2) is

− u′(α(2))

u′′(α(2))
= 2.557 × 10−5

0.2814
= 9.1 × 10−5.
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%*******************%
% initialization %
%*******************%
CertaintyEqTolerance = 10ˆ(-5); right-hand side of eqn (4.22)
alpha = 0; eqn (4.23)
iteration = 0;
CertaintyEqPrecision = 2*CertaintyEqTolerance;

%*******************%
% the main loop %
%*******************%
%repeat iterations until the desired precision is attained%

while (abs(CertaintyEqPrecision) >= CertaintyEqTolerance) eqn (4.22)

u=0.5*(1+0.18*alpha)ˆ(-4)+0.5*(1-0.12*alpha)ˆ(-4); eqn (4.12)
du=-2*(0.18*(1+0.18*alpha)ˆ(-5)-0.12*(1-0.12*alpha)ˆ(-5)); eqn (4.13)
ddu=10*(0.18ˆ2*(1+0.18*alpha)ˆ(-6)+0.12ˆ2*(1-0.12*alpha)ˆ(-6)); eqn (4.14)

%precision of current alpha
aPrecision = -du/ddu; eqn (4.10)
%precision in certainty equivalent wealth
CertaintyEqPrecision = 1/8*duˆ2/ddu/(uˆ1.25); eqn (4.11)

iteration = iteration+1;
alpha = alpha - du/ddu; eqn (4.21)

end;

Figure 4.2. Implementation of Newton’s method in MATLAB; program chapter4sect2.m.

4.2.1 MATLAB Implementation

Figure 4.2 shows that Newton’s method can easily be programmed in MATLAB.
The numerical results of the previous section can be reproduced by running the
program, chapter4sect2.m.

4.3 Optimal CRRA Investment Using Empirical Return Distribution

The implementation of Newton’s algorithm provides a very powerful tool because
we can now tackle investment problems that do not permit a closed-form solution of
the optimality condition u′(α) = 0. Most incomplete market investment problems
fall into this category. Consider as an example an investor in the Japanese equity
market who wishes to pursue a buy-and-hold strategy for a year. The empirical
distribution of the relevant returns was depicted in Figure 3.7.

4.3.1 Automatic Generation of the Target Function and Its Derivatives

One weakness of the portfolio optimizing program in Figure 4.2 is that one must
type in the expected utility and all its derivatives by hand. It would be much nicer to
simply provide the values of excess return and the corresponding probabilities and
let the program take care of everything else.

To achieve this goal we will write the target function in a more schematic way:

u(α) = E[(1 + αX)1−γ ].
The vector of excess returns

X = [−0.37 −0.32 · · · 0.83 0.87
]︸ ︷︷ ︸

26 entries

,
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and the vector of probabilities corresponding to the 26 levels of risky return

p = [0.011 0.023 · · · 0.002 0.004
]︸ ︷︷ ︸

26 entries

are given. The investor also knows her γ : γ = 5.
To compute the expectation E[(1 + αX)1−γ ], say for α = 0.1, one will first

evaluate the normalized wealth 1 + αX,

V = 1 + 0.1X

= [1 − 0.037 1 − 0.032 · · · 1 + 0.083 1 + 0.087
]

= [0.963 0.968 · · · 1.083 1.087
]
,

then generate the vector of utility levels (1 + αX)1−γ

V −4 = [0.963−4 0.968−4 · · · 1.083−4 1.087−4
]

= [1.163 1.139 · · · 0.727 0.716
]
,

and finally compute the expected utility (the weighted average of utility levels) as
a matrix product between the row vector of utilities V −4 and the column vector of
probabilities p∗ (vector p transposed):

E[(1 + αX)1−γ ] = V 1−γ p∗

= [1.163 1.139 · · · 0.727 0.716
]
⎡
⎢⎢⎢⎢⎢⎣

0.011
0.023

...

0.002
0.004

⎤
⎥⎥⎥⎥⎥⎦ = 0.973.

(4.24)

In MATLAB

wealth = 1 + alpha*X;

u = (wealth.ˆ(1-gama))*p’;

Note the special operator .ˆ for element-by-element exponentiation.
We now have to obtain the values of u′(α) and u′′(α). Recall from (4.24) that

the target function is effectively a weighted average of utility levels, with weights
equal to the probabilities of obtaining different values of excess return. Note that the
weights (probabilities) do not depend on the choice variable α, only the utility levels
do. Because the weights remain constant, it is easy to realize that the change in the
weighted average of utility levels is the same as the weighted average of changes in
utility levels in individual states, in other words

u′(α) = d

dα
E[(1 + αX)1−γ ] = E

[
d

dα
(1 + αX)1−γ

]
. (4.25)

Applying this fact twice consecutively we obtain

u′′(α) = d2

dα2 E[(1 + αX)1−γ ] = E

[
d2

dα2 (1 + αX)1−γ

]
. (4.26)
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Evaluation of derivatives on the right-hand side of (4.25) and (4.26) tells us how to
express u′(α) and u′′(α) in terms of expectations,

u′(α) = (1 − γ )E[X(1 + αX)−γ ], (4.27)

u′′(α) = γ (γ − 1)E[X2(1 + αX)−γ−1]. (4.28)

The computation of u′(α) and u′′(α) in MATLAB proceeds similarly to the eval-
uation of u(α) described above. To find the random variable X(1 +αX)−γ we first
form a row vector (1 + αX)−γ

V −5 = [0.963−5 0.968−5 · · · 1.083−5 1.087−5
]

= [1.207 1.177 · · · 0.671 0.659
]

and multiply it element by element with the row vector X,

XV −5 = [−0.37 × 1.207 −0.32 × 1.177 · · · 0.83 × 0.671 0.87 × 0.659
]

= [−0.447 −0.377 · · · 0.558 0.573
]
.

Finally, we compute the expectation by multiplying the row vector XV −5 with
the column vector p∗:

E[X(1 + αX)−γ ] = (V −γ )p∗

= [−0.447 −0.377 · · · 0.558 0.573
]
⎡
⎢⎢⎢⎢⎢⎣

0.011
0.023

...

0.002
0.004

⎤
⎥⎥⎥⎥⎥⎦

= −0.218.

In MATLAB

du = (1-gama)*(X.*(wealth.ˆ(-gama)))*p’;

ddu = gama*(gama-1)*((X.ˆ2).*(wealth.ˆ(-gama-1)))*p’;

Note the special operator .* for the element-by-element multiplication. Analo-
gously ./ represents element-by-element division.

4.3.2 CRRA Portfolio Optimizer Wrapped Up as a Procedure

In practice, the portfolio optimizer will be used inside a larger program whose task
it is to process data, deliver the data as an input to the optimizer, take the output from
the optimizer and present it graphically or otherwise to the user. If we simply leave
the optimizer in the main body of the large program, there is a danger that a variable
used in the optimizer, say alpha, is also used elsewhere in the larger program for
a completely different purpose. To prevent the optimizer interfering with the rest
of the program it is a very good idea to encase the optimizer in a procedure, which
acts like a protective shield.

Firstly, one must have a name for the procedure: we shall call it CRRAmax.
Secondly, one must determine what the outputs of the procedure are. In this case we
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function [CEq, alpha] = CRRAmax(X, p, gama, CertaintyEqTolerance)
%*******************%
% initialization %
%*******************%
alpha = 0;
iteration = 0;
CEqPrecision = 2*CertaintyEqTolerance;
%*******************%
% the main loop %
%*******************%
%repeat iterations until the desired precision is attained
while (abs(CEqPrecision) >= CertaintyEqTolerance) eqn (4.22)
wealth = 1 + X*alpha;
u = (wealth.ˆ(1-gama))*p’; eqn (4.24)
du = (1-gama)*(X.*(wealth.ˆ(-gama)))*p’; eqn (4.27)
ddu = gama*(gama-1)*((X.ˆ2).*(wealth.ˆ(-gama-1)))*p’; eqn (4.28)
%precision in certainty equivalent wealth
CEq = uˆ(1/(1-gama));
CEqPrecision = -1/2/(1-gama)*CEq*duˆ2/ddu/u; eqn (4.11)
iteration = iteration+1;
alpha = alpha - du/ddu;
end;

Figure 4.3. CRRA portfolio optimizer as a procedure, MATLAB function CRRAmax.m.

Table 4.1. Iterations of Newton’s method applied to
optimal investment in the Japanese stock market.

Iteration α u1/(1−γ )(α) errorCE/v(α)

0 0.0000 1.000 1.2 × 10−2

1 0.2974 1.0138 6.0 × 10−4

2 0.3749 1.0144 8.4 × 10−8

wish to compute the maximum certainty equivalent CEq and the optimal portfolio
decision alpha. Thirdly, one must specify the inputs, in our case X, p, gama and
numerical precision CEqTolerance. The code of the procedure is stored in a
so-called function M-file whose first line must read

function [CEq,alpha] = CRRAmax(X,p,gama,CEqTolerance);

The name of the function file must coincide with the name of the procedure—in our
case it must be CRRAmax.m. In MATLAB all variables used inside a function file
are local, meaning that they are never allowed to interfere with variables of the same
name outside the procedure. The entire procedure CRRAmax is shown in Figure 4.3.

4.3.3 First Iteration of CRRA Optimizer and Quadratic Utility

With the portfolio optimization neatly tucked away in the procedure CRRAmax,
the main body of the program only contains a few lines defining X, p and gama,
receiving outputs from the optimizer and reporting the results on the screen. The
program also compares the optimal portfolio choice α̂ with the optimal portfolio of
quadratic utility investor with the same local risk aversion, β̂−1/γ . The main body
of the code is given in Figure 4.4.
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The program chapter4sect3.m converges after two iterations and the results are
summarized in Table 4.1. For the quadratic investor with local risk aversion R(v) =
5 we obtain

1
5 β̂−1 = 1

5

E[X]
E[X2] = 0.2974,

which is the same as the α from the first iteration in Table 4.1. This is not a
coincidence; in general,

α(1) = α(0)︸︷︷︸
0

− u′(α(0))

u′′(α(0))
= − u′(0)

u′′(0)
,

and from (4.27) and (4.28)

u′(0) = (1 − γ )E[X],
u′′(0) = γ (γ − 1)E[X2],

so that

α(1) = − (1 − γ )E[X]
γ (γ − 1)E[X2] = 1

γ

E[X]
E[X2] = β̂−1

γ
.

For a CRRA investor with risk aversion γ the first iteration of the CRRA portfolio
optimizer is identical to the optimal portfolio choice of a quadratic utility investor
with local risk aversion R(v) = γ .

To find out how much the CRRA investor would lose by pursuing the suboptimal
quadratic utility investment β̂−1/γ , we simply note that this investment strategy is in
the second row of Table 4.1 and that the corresponding error in certainty equivalent
is 6×10−4; thus the investor loses 6×10−4 part of her risk-free wealth. Suppose the
risk-free wealth is 1 220 000, then the investor foregoes £732 in certainty equivalent
wealth if she pursues an investment strategy dictated by quadratic utility instead of
the optimal strategy.

4.4 HARA Portfolio Optimizer

So far we have dealt with the optimization of the CRRA utility, which forces the
shape parameter γ and the local relative risk aversion R(v) to be the same. With
the HARA investor we wish to decouple the two quantities and in particular we
wish to maintain a plausible level of R(v) as γ approaches infinity. Hence we
are interested in the percentage increase in certainty equivalent wealth per unit
of local risk tolerance (equals the investment potential IP) and portfolio decision
per unit of local risk tolerance beta. If CEq and alpha are outputs from the
procedure CRRAmax, it is a simple matter to recompute IP and beta from the
scaling properties (3.21) and (3.22):

IP = gama*(CEq-1); (4.29)

beta = gama*alpha; (4.30)
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%****************%
% parameters %
%****************%
%row vector of rates of return from -35% to 90% in 5% increments
Risky1 = [-0.35 : 0.05 : 0.90];
RiskFreeRate = 0.02;
%*********************************%
% global parameters for utility %
% maximizing procedure CRRAmax %
%*********************************%
gama = 5;
CEqTolerance = 10ˆ-5;
%relative frequency of annual real returns on NIKKEI 225
p = [0.011 0.023 0.021 0.041 0.034 0.061 0.112 0.095 ...
0.097 0.081 0.091 0.068 0.074 0.049 0.047 0.028 0.015 ...
0.008 0.013 0.021 0.000 0.000 0.004 0.000 0.002 0.004];
X = Risky1-RiskFreeRate;
%*********************************************%
% Computations for quadratic utility investor %
%*********************************************%
EX = X*p’; % E[X]
EX2 = X.ˆ2*p’; % E[Xˆ2]
%****************************%
% main body of the programme %
%****************************%
[CEq,alpha] = CRRAmax(X, p, gama, CEqTolerance) ;
disp(’ ’);
disp(sprintf(’Certainty equivalent wealth/Safe wealth %12.4f ’, CEq));
disp(sprintf(’CRRA alpha %12.4f ’, alpha));
disp(sprintf(’quadratic utility alpha %12.4f ’, EX/EX2/gama));
disp(’ ’);

Figure 4.4. Optimal portfolio choice of a Japanese equity investor
with CRRA utility. MATLAB program chapter4sect3.m.

There is a catch, however. With γ large the CRRA investor is so risk averse that the
optimal α is identically zero, and the optimal certainty equivalent over safe wealth
is 1. If we simply design the procedure HARAmax as the CRRAmax procedure with
transformations (4.29), (4.30), the output for γ large will be zero risky investment.
This can be seen by running the program chapter4sect4a.m.

In these circumstances we have to make sure the certainty equivalent of an investor
with unit local risk aversion is computed with sufficient precision.

Thus instead of requiring the CRRA certainty equivalent to satisfy∣∣∣∣CE(α̂) − CE(α(n))

v

∣∣∣∣ < tolerance,

we should aim for precision in the investment potential∣∣∣∣γ CE(α̂) − CE(α(n))

v

∣∣∣∣ < tolerance.

In view of (4.9) the stopping rule now reads∣∣∣∣ γ

2(1 − γ )

u(α(n))1/(1−γ )(u′(α(n)))2

u(α(n))u′′(α(n))

∣∣∣∣ < tolerance. (4.31)

The entire procedure HARAmax1 is shown in Figure 4.5.
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function [IP, beta] = HARAmax1(X,p,gama,IPTolerance);
%******************%
% initialization %
%******************%
alpha = 0;
iteration = 0;
IPPrecision= 2*IPTolerance;
%*****************%
% the main loop %
%*****************%
%repeat iterations until the desired precision is attained
while (abs(IPPrecision) >= IPTolerance )
wealth = 1 + alpha’*X;
u = (wealth.ˆ(1-gama))*p’;
du = (1-gama)*(X.*(wealth.ˆ(-gama)))*p’;
ddu = gama*(gama-1)*((X.ˆ2)*(wealth.ˆ(-gama-1)))*p’;
CE = uˆ(1/(1-gama));
IPPrecision = -1/2/(1-gama)*duˆ2/ddu/u*gama*CE;
iteration = iteration+1;
alpha = alpha - du/ddu;
end;
IP = gama*(CE - 1);
beta = gama*alpha;

Figure 4.5. HARA portfolio optimizer, HARAmax1.m.

4.5 HARA Portfolio Optimization with Several Risky Assets

Let us consider a case with two risky assets with returnsX1 andX2 given in Table 4.2.
Assuming that the two returns are independent, the joint distribution takes the form
given in Table 4.3.

This model has four states of the world and two choice variables α1 and α2; our
aim is to maximize

u(α1, α2) = E[(1 + α1X1 + α2X2)
1−γ ].

Recall that with one risky asset the portfolio optimizer dictates

α(n+1) = α(n) − (u′′(α(n)))−1u′(α(n)). (4.32)

With several risky assets (4.32) remains the same, except α is now a vector, u′ is a
vector (the so-called gradient) and u′′ is a matrix (called Hessian):

G(α) =

⎡
⎢⎢⎣
∂u(α1, α2)

∂α1

∂u(α1, α2)

∂α2

⎤
⎥⎥⎦ , (4.33)

H(α) =

⎡
⎢⎢⎢⎣
∂2u(α1, α2)

∂α2
1

∂2u(α1, α2)

∂α1∂α2

∂2u(α1, α2)

∂α1∂α2

∂2u(α1, α2)

∂α2
2

⎤
⎥⎥⎥⎦ , (4.34)

α(n+1)︸ ︷︷ ︸
2×1 vector

= α(n)︸︷︷︸
2×1 vector

− H−1(α(n))︸ ︷︷ ︸
inverse of 2×2 matrix

G(α(n))︸ ︷︷ ︸
2×1 vector

. (4.35)
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Table 4.2. Marginal distribution of two excess returns.

value of X1 −0.22 0.18 value of X2 −0.12 0.18
probability 1

4
3
4 probability 1

2
1
2

Table 4.3. Joint distribution of two excess returns.

value of (X1, X2) (−0.22,−0.12) (0.18, 0.18) (0.18,−0.12) (0.18, 0.18)
probability 1

4 × 1
2

1
4 × 1

2
3
4 × 1

2
3
4 × 1

2

The gradient and Hessian are evaluated the same way as the derivatives u′ and u′′
in (4.27) and (4.28); for example, the first entry in the gradient is

∂

∂α1
E[(1 + α1X1 + α2X2)

1−γ ] = E

[
∂

∂α1
(1 + α1X1 + α2X2)

1−γ

]
= (1 − γ )E[X1(1 + α1X1 + α2X2)

−γ ].
Having performed the necessary algebra in (4.33) and (4.34) we obtain

G(α) = (1 − γ )

[
E[X1(1 + α∗X)−γ ]
E[X2(1 + α∗X)−γ ]

]
, (4.36)

H(α) = γ (γ − 1)

[
E[X2

1(1 + α∗X)−γ−1] E[X1X2(1 + α∗X)−γ−1]
E[X1X2(1 + α∗X)−γ−1] E[X2

2(1 + α∗X)−γ−1]
]
,

(4.37)

using matrix notation α∗X for α1X1 + α2X2.

With several risky assets Newton’s method of equation (4.21) generalizes to

α(n+1) = α(n) − H−1(α(n))G(α(n)),

where

G(α) = (1 − γ )E[X∗(1 + α∗X)−γ ],
H(α) = γ (γ − 1)E[XX∗(1 + α∗X)−γ ].

In analogy with (4.6)

α̂ − α(n) ≈ −H−1(α(n))G(α(n))

signifies the distance of α(n) from optimal α and the quadratic form,

errorCE/v(α
(n)) = − γ

2(1 − γ )

G∗(α(n))[H(α(n))]−1G(α(n))

u(α(n))−γ /(1−γ )
,

is the precision of certainty equivalent wealth, in analogy with (4.31).

4.5.1 Automatic Generation of the Target Function and Its Derivatives

Our aim is to calculate the first and second derivatives G(α) and H(α) in a manner
general enough to allow for any number of risky securities, not just two. To this end
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we will represent the two securities X1, X2 and probabilities p in matrix form, with
columns corresponding to the four states in the order given in Table 4.3,

X =
[
X1

X2

]
=
[−0.22 −0.22 0.18 0.18
−0.12 0.18 −0.12 0.18

]
,

p = [ 1
8

1
8

3
8

3
8

]
.

Suppose we have

α =
[
α1

α2

]
=
[

0.1
0.2

]
.

To evaluate the target function u(α) = E[(1 + α∗X)1−γ ] we first compute the
normalized wealth,

V = 1 + α∗X,

in MATLAB

wealth = 1 + alpha’*X;

yielding

V = 1 + [0.1 0.2
] [−0.22 −0.22 0.18 0.18

−0.12 0.18 −0.12 0.18

]
= 1 + [−0.046 0.014 −0.006 0.054

]
= [0.954 1.014 0.994 1.054

]
.

Next we evaluate the utility levels V 1−γ and compute their expected value by mul-
tiplying V 1−γ with the column vector of probabilities p∗

u(α) = V 1−γ p∗

= [0.954−4 1.014−4 0.994−4 1.054−4
]
⎡
⎢⎢⎢⎢⎣

1
8
1
8
3
8
3
8

⎤
⎥⎥⎥⎥⎦ = 0.957,

in MATLAB

u = (wealth.ˆ(1-gama))*p’;

The evaluation of the gradient is only slightly more complicated. To get the dimen-
sions right we will multiply the marginal utility V −γ with individual probabilities
element by element,

V −γ p = [0.954−5 1.014−5 0.994−5 1.054−5
] [ 1

8
1
8

3
8

3
8

]
= [0.158 0.117 0.386 0.288

]
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and use this adjusted vector of ‘probabilities’ to compute the expectation,

G = (1 − γ )E[XV −γ ]

= −4X(V −γ p)∗ = −4

[−0.22 −0.22 0.18 0.18
−0.12 0.18 −0.12 0.18

]⎡⎢⎢⎣
0.158
0.117
0.386
0.288

⎤
⎥⎥⎦

=
[ −0.243
−0.0305

]
.

In MATLAB

du = (1-gama)*X*((wealth.ˆ(-gama)).*p)’;

Using the same logic the expression for the Hessian is

ddu = gama*(gama-1)*X . . .

*(X.*(ones(size(X,1),1)*((wealth.ˆ(-gama-1)).*p)))’;

To allow for multiple assets one simply replaces the main body of procedure
HARAmax with the following code.
while (abs(IPPrecision) >= IPTolerance)
wealth = 1 + alpha’*X;
u = (wealth.ˆ(1-gama))*p’;
du = (1-gama)*X*((wealth.ˆ(-gama)).*p)’;
ddu = gama*(gama-1)*X*(X.*(ones(size(X,1),1) ...

*((wealth.ˆ(-gama-1)).*p)))’;
CE = uˆ(1/(1-gama));
IPPrecision = -1/2/(1-gama)*du’*(ddu\du)/u*gama*CE;
alpha = alpha - ddu\du;
end;

4.6 Quadratic Utility Maximization with Multiple Assets

The main advantage of using the quadratic utility is the availability of closed-form
solutions with multiple assets. We will use the set-up of Section 4.5 assuming that
we have two risky assets with a distribution of excess returns as given in Table 4.3.

The normalized expected quadratic utility contains the following expectation

g(β) = E[(1 − β1X1 − β2X2)
2].

The expression
I (β) = (1 − β1X1 − β2X2)

2

inside the expectation is a quadratic form. In order to separate the random and
non-random parts in I it is useful to write it in matrix notation:

I (β) = [1 −β1 −β2
]︸ ︷︷ ︸

non-random

⎡
⎣ 1 X1 X2

X1 X2
1 X1X2

X2 X1X2 X2
2

⎤
⎦

︸ ︷︷ ︸
random

⎡
⎣ 1

−β1

−β2

⎤
⎦

︸ ︷︷ ︸
non-random

.

All the random elements now appear inside the matrix.



100 4. Numerical Techniques for Optimization

We are now ready to compute the expected utility. Because the coefficients in
the vector

[
1 β1 β2

]
are non-random, the expectation will only affect the terms

inside the matrix:

g(β) = E[I (β)]

= [1 −β1 −β2
]⎡⎣ 1 E[X1] E[X2]

E[X1] E[X2
1] E[X1X2]

E[X2] E[X1X2] E[X2
2]

⎤
⎦
⎡
⎣ 1

−β1

−β2

⎤
⎦

= 1 − 2
[
β1 β2

] [E[X1]
E[X2]

]
︸ ︷︷ ︸

µX

+ [β1 β2
] [ E[X2

1] E[X1X2]
E[X1X2] E[X2

2]
]

︸ ︷︷ ︸
ΩX

[
β1

β2

]
.

Let us now differentiate the expected utility with respect to β1 and β2 to obtain
two first-order conditions

−2

[
E[X1]
E[X2]

]
︸ ︷︷ ︸

µX

+2

[
E[X2

1] E[X1X2]
E[X1X2] E[X2

2]
]

︸ ︷︷ ︸
ΩX

[
β1

β2

]
︸ ︷︷ ︸
β̂−1

= 0,

β̂−1 = Ω−1
X µX.

Substituting this value into g(β) we obtain

g(β̂−1) = 1 − 2β̂∗−1µX + β̂∗−1ΩXβ̂−1

= 1 − µ∗
XΩ−1

X µX. (4.38)

4.6.1 Variance–Covariance Matrix

The matrix ΩX represents the second non-central moments of the distribution of ex-
cess returns. However, professional investors prefer to work with central moments,
that is variances and covariances. The variance–covariance matrix ΣX is defined
as

ΣX =
[

E[(X1 − E[X1])2] E[(X1 − E[X1])(X2 − E[X2])]
E[(X1 − E[X1])(X2 − E[X2])] E[(X2 − E[X2])2]

]
.

Just as in the univariate case we have σ 2
X = E[X2] − µ2

X, in the multivariate case
ΣX and ΩX are closely related

ΣX = ΩX − µXµ∗
X.

Similarly, in the univariate case we can write

β̂−1 = µX

E[X2] = µX/σ 2
X

1 + µ2
X/σ 2

X

;

it is left as an exercise to show that in the multivariate case β−1 opt can be expressed
analogously as

β̂−1 = Ω−1
X µX = Σ−1

X µX

1 + µ∗
XΣ−1

X µX

. (4.39)
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Substituting (4.39) into the expected utility (4.38) we obtain

min
β∈Rn

E[(1 − β∗X)2] = 1 − µ∗
XΣ−1

X µX

1 + µ∗
XΣ−1

X µX

= 1

1 + µ∗
XΣ−1

X µX

. (4.40)

Another exercise shows that, in direct analogy with (4.42), µ∗
XΣ−1

X µX is the square
of the highest Sharpe ratio attainable from investing in the two risky assets:

max
β∈Rn

SR2(β∗X) = µ∗
XΣ−1

X µX. (4.41)

The highest Sharpe ratio available with several risky assets is sometimes called the
market Sharpe ratio (it is implicitly understood that the ‘market’ is restricted to
the risky securities being analysed). The relationship (4.41) together with (4.40)
gives an exact analogy of the relationship between the Sharpe ratio and the expected
quadratic utility for one risky asset.

Coming back to our risky assets,

E[X] = Xp∗ =
[−0.22 −0.22 0.18 0.18
−0.12 0.18 −0.12 0.18

]⎡⎢⎢⎣
0.125
0.125
0.375
0.375

⎤
⎥⎥⎦ =

[
0.08
0.03

]
.

The computation of the variance–covariance matrix is best done in two stages, using
the identity

ΣX = E[XX∗] − E[X]E[X∗].
Since we already know E[X], it is easy to calculate E[X]E[X∗]:

E[X]E[X∗] =
[

0.08
0.03

] [
0.08 0.03

] = 10−2
[

0.64 0.24
0.24 0.09

]
.

What remains to be computed is E[XX∗]. There are many ways of doing this, one
particularly attractive way being

E[XX∗] = X(X p)∗

=
[−0.22 −0.22 0.18 0.18
−0.12 0.18 −0.12 0.18

]⎡⎢⎢⎣
−0.22 × 0.125 −0.12 × 0.125
−0.22 × 0.125 0.18 × 0.125
0.18 × 0.375 −0.12 × 0.375
0.18 × 0.375 0.18 × 0.375

⎤
⎥⎥⎦

= 10−2
[

3.64 0.24
0.24 2.34

]
.

The variance–covariance matrix is, therefore,

ΣX = 10−2
[

3.64 0.24
0.24 2.34

]
− 10−2

[
0.64 0.24
0.24 0.09

]
= 10−2

[
3 0
0 2.25

]
.

It is not a coincidence that the covariance between X1 and X2 is zero. When
X1 and X2 are independent, as it is the case here; it is always true that they are
also uncorrelated. You can find out more about the very important concept of
independence and its consequences in Appendix B.
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4.7 Summary

• Optimal investment problems admit closed-form solution only when the mar-
ket is complete. The only exception is the quadratic utility, which admits
closed-form solutions with both multiple risky assets and incomplete mar-
kets.

• One can approximate any utility function by the corresponding second-order
Taylor expansion and solve the investment problem for the approximating
quadratic utility instead. The result is the same as the first iteration of Newton’s
algorithm described in Section 4.2. Typically, one requires more than one
iteration to reach a reasonable degree of optimality, therefore the quadratic
approximation does not often suffice.

4.8 Notes

Newton’s root-finding algorithm is standard and can be found in most textbooks
on numerical mathematics, such as Cheney and Kincaid (1999). For a detailed
discussion of multivariate optimization methods analyzing global as well as local
convergence properties see Dennis Jr and Schnabel (1996). Economists use whole
chains of optimizations to find optimal portfolio allocations and optimal consump-
tion of individuals over their lifetime. An introduction to these types of models can
be found in Heer and Maußner (2004).

4.9 Exercises

Exercise 4.1 (Taylor expansion). Find the first-order Taylor expansion of

(1 + x)1/(1−γ )

around x = 0. This expansion was used to derive the percentage error of certainty
equivalent wealth in (4.9).

Exercise 4.2 (stopping rule). Newton’s algorithm of Section 4.2 stops when∣∣∣∣CE(α̂) − CE(α(n))

v

∣∣∣∣
is small. But perhaps we should stop when∣∣∣∣CE(α(n))/v − 1

CE(α̂)/v − 1

∣∣∣∣
is small? Argue which stopping rule is more appropriate.

Exercise 4.3 (arbitrage-adjusted Sharpe ratio). Assume that the risk-free return
is 2% per annum. Decompose the NIKKEI 225 return into a pure Sharpe ratio part
and a pure arbitrage part. Compute the standard and the arbitrage-adjusted Sharpe
ratios. Do this by adapting procedure HARAmax in program chapter4sect4b.m.

Exercise 4.4 (quadratic approximation with multiple risky assets). Use the set-
up of Section 4.5 to compute the optimal investment for γ = 5 using the second-
order Taylor approximation of the power utility. Compare the outcome with the exact
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results obtained in Section 4.5. Reduce the Sharpe ratio of the risky assets to 0.1
and recompute the exact portfolio weights together with the quadratic approximation
weights. Note that the approximation improves dramatically.

Exercise 4.5 (mean–variance efficient portfolio). LetX be a vector of risky excess
returns. Denote the vector of expected excess returns µ and define the square matrix
Ω of second non-central moments,

Ω = E[XX∗].
By definition the variance–covariance matrix Σ of excess returns X is given as

Σ = E[XX∗] − E[X]E[X∗] = Ω − µµ∗.
The vectors Ω−1µ and Σ−1µ differ only by a scalar multiple and both represent
the so-called mean–variance efficient portfolio. Express Ω−1µ in terms of Σ−1µ.
(Hint: define b = Ω−1µ and express Ωb using Σb.)

Exercise 4.6 (maximum Sharpe ratio). Given a vector of risky excess returns X

find the market Sharpe ratio, that is, solve

max
α∈Rn

(E[α∗X])2

E[(α∗X)2] − (E[α∗X])2 . (4.42)

Exercise 4.7 (perfectly correlated assets). Let X1 and X2 be two random excess
returns. Describe the circumstances under which the matrix Ω

Ω =
[

E[X2
1] E[X1X2]

E[X1X2] E[X2
2]
]

is not invertible. Repeat the same exercise with

Σ =
[

E[X2
1] − (E[X1])2 E[X1X2] − E[X1]E[X2]

E[X1X2] − E[X1]E[X2] E[X2
2] − (E[X2])2

]
.



5
Pricing in Dynamically Complete Markets

The one-period model is often too simple for practical purposes. An individual
investor has approximately 50 years of adult life when she is making choices over
savings, investment and consumption. If important investment decisions are taken
every five years, we need at least a 10-period model. Professional investors trade
even more frequently. A trader on a stock exchange may adjust his or her portfolio
several times a day resulting in more than 500 investment decisions a month.

This chapter explains the essentials of dynamic decision-making in frictionless
complete markets where every source of financial risk is priced in the market. Even
though real financial markets are never complete, the complete market approxima-
tion is an extremely useful one, firstly because it facilitates the mathematical analysis
and secondly because it gives a reasonably good approximation of what is going on
in reality. The latter point will be examined in greater detail in Chapter 13, which
looks at dynamic decision-making in incomplete markets.

The aim of this chapter is to introduce reader to the techniques which are instru-
mental in tackling asset pricing in a dynamic framework. We use a simple set-up
with the European call option as a focus asset in a discrete-time model to illustrate
the backward recursive pricing procedure and to recover the option price as an un-
conditional expectation under risk-neutral probabilities. Further important concepts
related to dynamic portfolio selection are introduced in Chapter 8 on information
management and in Chapter 9 on the change of measure.

5.1 Options and Portfolio Insurance

Consider the following hypothetical situation. Due to an exceptionally high number
of new employees, pension fund ‘A’will receive £10 million in pension contributions
one year from now. The fund will want to invest this amount in the FTSE 100 Index,
but is worried that the price of shares may become over-inflated over the next year
before it does so. Consequently, the fund decides to buy a 5% out-of-the-money
European call option expiring in one year’s time. It means that the fund is buying
the right (but not the obligation) to buy shares in the FTSE 100 Index in one year’s
time at a price 5% higher than the current price. Consequently, the fund is protected
against price increases in excess of 5%.

Consider pension fund ‘B’. Currently, the fund has £20 million invested in the
FTSE 100 Index, but due to an exceptional number of retiring employees fund ‘B’
will have to pay £10 million in one year’s time. The fund is concerned about a
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potential short-term slump; therefore, it buys a 10% out-of-the-money European
put option expiring in one year. This gives the fund the right (but not the obligation)
to sell FTSE 100 shares at a price 10% lower than the current price one year from
today, and protects it against price decreases larger than 10%.

To summarize, buying a call option is equivalent to securing the potential upside
gains beforehand, while buying a put option provides a beforehand protection from
downside losses. Conversely, the seller (issuer) of a call option is giving up the
potential upside gains for a fixed up-front payment, while the seller (issuer) of a put
option is providing insurance against potential downside losses for a fixed premium
up front. The price specified in the option contract (that is, the price at which the
holder of the option has the right to buy or sell the underlying stock) is called the
strike price.

What is a fair price for a call option? Intuitively, if the underlying stock price
is very likely to go up, we would expect the call to be more expensive than if the
price is almost certainly expected to fall. Quite surprisingly, in many situations this
intuition turns out to be a poor guide. Our intuition is based on the fact that the
option payoff is not a linear function of the stock return and, therefore, the option
is not a redundant security relative to the stock and the risk-free bond. This, of
course, is only true if one takes into account ‘static’ replicating portfolios where
the proportion of stock holding is fixed over time. But as soon as one considers
time-dependent replicating strategies the intuition becomes less clear. It turns out
that dynamic replicating portfolios consisting of time-varying proportions of the
underlying stock and a risk-free bond can match the payoff of options quite well,
and in some idealized instances perfectly.

5.2 Option Pricing

5.2.1 Representation of Stock Prices

Our aim is to determine the option price relative to the current stock price. First of
all we have to choose a basis time interval at which we will trade the stock. Our
aim is to price equity options, a specific example we have in mind is European call
options on the FTSE 100 Index. To keep the example as simple as possible, we will
make several simplifying assumptions. Firstly, for a realistic analysis one would
have to consider trading at least once a week, but that would result in more trading
periods than one can comfortably fit on a page. Hence we will consider trading once
a month, with the initial time to expiry three months. The second simplification is
to ignore transaction costs, which in reality can contribute significantly to the cost
of a replicating strategy. Thirdly, the risk-free rate is assumed to be the same both
for borrowing and lending. Last, but not least, we will exclude other options from
the replicating portfolio.

The simplest model of stock prices assumes that the monthly returns are inde-
pendent and identically distributed, in short IID. More specifically, we will assume
that the monthly return can only take two values, high and low, Ru and Rd. It is
not a terribly realistic model, but anything more sophisticated would take us into
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Stock price model (FTSE 100) 5954.64
× 1.053

5654.93
× 1.053 × 0.965

5370.30 5457.00
× 1.053 × 0.965 × 1.053

5100.00 5182.34
× 0.965 × 1.053 × 0.965

4921.50 5000.96
× 0.965 × 1.053

4749.25
× 0.965

4583.02

t = 0
28 Jan

t = 1
28 Feb

t = 2
28 Mar

t = 3
28 Apr

Figure 5.1. Binomial model for the FTSE 100 Index.

the world of incomplete markets, which is somewhat more complex and will be
discussed later in Chapter 13.

The next step is to calibrate the model to monthly returns. Calibration is a
process of matching at least some aspects of real data by selecting suitable values of
parameters in the model. The average monthly return on the FTSE 100 between 1984
and 2001 was about 0.9%, but in five-year subsamples this figure varies from 0.15%
to 1.3%. The standard deviation between 1984 and 2001 was about 4.4%, in five-year
subsamples it varies between 3.7% and 6.2%. The variation of the average return
and of its standard deviation contradicts our assumption of identically distributed
returns, but we shall ignore this contradiction for the time being. To match the
monthly expected return and its standard deviation our task is to find numbers Ru,
Rd and p such that

pRu + (1 − p)Rd = 1.009,

pR2
u + (1 − p)R2

d = 0.0442 + 1.0092.

Since we have two equations and three unknowns there is a certain degree of arbi-
trariness in the choice of p; we will simply choose p = 1

2 . Solving for Ru and Rd
yields

Ru = 1.053 with pu = 1
2 , (5.1)

Rd = 0.965 with pd = 1
2 . (5.2)

The probabilities pu and pd are called objective probabilities; they are our best
assessment of the frequency with which Ru and Rd will occur in reality.

The entire model for stock prices is described in Figure 5.1. Our model has three
periods, each corresponding to one month, and four dates

t = 0, 1, 2, 3.

If t = 0 corresponds to 28 January, then t = 3 corresponds to the expiry date three
months from the starting date, 28 April of the same year. For the purpose of this
example we assume the value of the FTSE 100 Index on 28 January is 5100.00
points.
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Stock price 5954.64
5654.93

5370.30 5457.00
5100.00 5182.34

4921.50 5000.96
4749.25

4583.02

European call option value Strike = 5355 599.64
?

? 102.00
?

? 0.00
?

0.00

t = 0 t = 1 t = 2 t = 3

?

Figure 5.2. Intrinsic value of a European call option struck at K = 5355.

The last ingredient is the risk-free interest rate. Assuming a constant rate equiv-
alent to 4% per annum, the monthly risk-free return is

Rf = 1.041/12 = 1.0033.

5.2.2 Intrinsic Option Value

Consider now a 5% out-of-the-money call option that expires in three months. Such
an option gives its owner the right to buy FTSE 100 shares at the strike price
K = £5100 × 1.05 = £5355 in three months. Clearly, this right is worthless
if the FTSE 100 is below 5355 points in three months’ time; in such a case we say
that the option has expired out of the money. In the top two nodes at time t = 3,
however, the option is in the money, and exercising it will lead to an immediate gain
of 5954.64 − 5355 = £599.64 and 5457 − 5355 = £102, respectively. The payoff
from exercising the option is known as the intrinsic value of the option. The stock
price and the option value at expiry are depicted in Figure 5.2.

5.2.3 Static Replicating Strategy

How much should we pay for the option at t = 0? Suppose we have x1 pounds
(dollars, euros, yen) in the bank account and we buy x2 FTSE 100 shares. After
three periods the money in the bank account becomes R3

f x1 = 1.0099x1, while the
value of the shares will depend on the FTSE value at t = 3, the value of the shares
is either 5954.64x2 or 5457x2 or 5000.96x2 or 4583.02x2. Perfect replication of the
option payoff therefore requires⎡

⎢⎢⎣
1.0099
1.0099
1.0099
1.0099

⎤
⎥⎥⎦

︸ ︷︷ ︸
safe return

x1 +

⎡
⎢⎢⎣

5954.64
5457.00
5000.96
4583.02

⎤
⎥⎥⎦

︸ ︷︷ ︸
stock price

x2 =

⎡
⎢⎢⎣

599.64
102.00
0.00
0.00

⎤
⎥⎥⎦

︸ ︷︷ ︸
option payoff

. (5.3)
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Stock price

Option pay-off

Static hedge pay-off

Pay-off

Figure 5.3. Static replicating portfolio and option value.

Using the techniques of Chapter 2 one can easily verify that (5.3) does not have a
solution. Intuitively, this is quite clear; the left-hand side is linear in the stock price,
whereas the right-hand side, being equal to max(0, stock price−5355), is not linear
in the stock price. This situation is depicted in Figure 5.3.

5.3 Dynamic Replicating Trading Strategy

One of the greatest insights of modern finance is that dynamic hedging can signif-
icantly reduce, and sometimes completely eliminate, the hedging error of a static
hedge. It is important to realize that if one looks only one period ahead, then each
node in our decision tree represents the familiar one-period model with two states
(high stock return, low stock return) and two securities (stock and bond). This al-
lows the hedge to be chosen separately in each node of the decision tree. Since we
know the option payoff at t = 3 it is quite natural to find the replicating strategy
working backwards from time t = 2 to time t = 0.

5.3.1 One-Period Hedge

We begin in the highest node at time t = 2 (see Figure 5.4). We want to replicate
the option payoff in the next period, which is known to be

b =
[

599.64
102.00

]
=
[
Cu

Cd

]
.

There are two basis assets available for hedging, a risk-free bond (bank account)
with initial value 1 and terminal payoff 1.0033, and the stock with initial value
Snow = 5654.93 and terminal payoff either Su = 5954.64 or Sd = 5457.00. In the
established notation the payoff matrix of basis assets is

A =
[

1.0033 5954.64
1.0033 5457.00

]
=
[
Rf Su

Rf Sd

]
,

with basis asset prices equal to

S =
[

1
5654.93

]
=
[

1
Snow

]
.

We are looking for the replicating portfolio x such that

Ax = b.
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Stock price 
5954.64

5654.93
5370.30 5457.00

5100.00 5182.34
4921.50 5000.96

4749.25
4583.02

t = 0 t = 1 t = 2 t = 3

Value of replicating portfolio
599.64

?
? 102.00

??
? 0.00

?
0.00

Figure 5.4. One-period model determining the value of option replicating
portfolio in the contingency with the highest stock price at t = 2.

The solution is[
x1

x2

]
=
[

1.0033 5954.64
1.0033 5457.00

]−1 [
599.64
102.00

]
=
[−5337.39

1

]
.

The value of x1 represents the amount of money in the bank account and x2 is
the number of shares. This means we must hold one unit of the stock and borrow
£5337.39 from the bank to generate the same payoff as that of the option. Intuitively,
this is quite clear: because the option ends in the money, its payoff is a linear
combination of the stock price minus strike price; therefore, one must hold one unit
of the stock and have to borrow enough to repay K , the strike price. Recall that
K = 5355 and consequently the amount to borrow is 5355/1.0033 = 5337.39. The
total cost of the replicating portfolio is equal to the cost of buying one unit of the
stock, £5655, minus the amount borrowed at the risk-free rate, in total 5654.93 −
5337.39 = 317.54.

5.3.2 Option Hedging Terminology: Option Delta

Practitioners call the number of shares in the hedging portfolio delta. It would be
natural to denote ‘option delta’ by �, but unfortunately this symbol is used quite
frequently to denote change in a variable, for example �t stands for a small time
interval. To avoid confusion we will denote the number of shares θ and we will use
this symbol consistently throughout the book. Consequently, option delta will be
denoted by θ wherever mathematical notation is required.

5.3.3 General Solution to the One-Period Hedging Problem

It is clear that dynamic hedging will require solution of many one-period hedging
problems. It is therefore useful to make a brief digression to find a general solution
of the replication problem Ax = b with two states and two securities. Because the
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Stock price 5954.64
5654.93

5370.30 5457.00
5100.00 5182.34

4921.50 5000.96
4749.25

4583.02

Value of replicating portfolio 599.64
317.54

? 102.00
??

? 0.00
?

0.00

t = 0 t = 1 t = 2 t = 3

Figure 5.5. One-period model determining the value of
option replicating portfolio when S2 = 5182.34.

financial interpretation of x is

x =
[
x1

x2

]
=
[

bank account
delta

]
Ax = b becomes

bank Rf + delta Su = Cu, (5.4)

bank Rf + delta Sd = Cd. (5.5)

Subtracting (5.5) from (5.4) we find the option delta

delta = Cu − Cd

Su − Sd
,

and plugging delta into (5.4) we find the bank account balance

bank = CdSu − CuSd

(Su − Sd)Rf
.

The bank account balance can be expressed in terms of stock returns if we divide
both numerator and denominator by the current stock price

bank = Cd(Su/Snow) − Cu(Sd/Snow)

(Su/Snow − Sd/Snow)Rf
= CdRu − CuRd

(Ru − Rd)Rf
.

The total cost of the replicating portfolio is equal to

bank + delta Snow = CdRu − CuRd

(Ru − Rd)Rf
+ Snow

Cu − Cd

Su − Sd
(5.6)

= CdRu − CuRd

(Ru − Rd)Rf
+ Cu − Cd

Ru − Rd
(5.7)

= Cd
Ru − Rf

(Ru − Rd)Rf
+ Cu

Rf − Rd

(Ru − Rd)Rf
. (5.8)
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Consider a one-period model with two states and two securities, a safe bank
account with interest rate Rf − 1 and a risky security with return Ru or Rd
corresponding to end-of-period prices Su and Sd. The perfect replicating portfolio
of a payoff C with values Cu, Cd has the following characteristics:

delta = Cu − Cd

Su − Sd
, (5.9)

bank = CdRu − CuRd

(Ru − Rd)Rf
, (5.10)

no-arbitrage value(C) = Cd
Ru − Rf

(Ru − Rd)Rf︸ ︷︷ ︸
state priced

+Cu
Rf − Rd

(Ru − Rd)Rf︸ ︷︷ ︸
state priceu

. (5.11)

Numerically,

bank = 11.927Cd − 10.930Cu, (5.12)

value(C) = 0.4338Cu + 0.5629Cd. (5.13)

5.3.4 Dynamic Hedging at t = 2, Continued

The situation in the middle node at t = 2 is depicted in Figure 5.5. We have[
Cu

Cd

]
=
[

102.00
0.00

]
,

[
Su

Sd

]
=
[

5457.00
5000.96

]
,

and the one-period risky returns are by assumption always the same Ru = 1.053,
Rd = 0.965. From (5.9), (5.10)

delta = 102 − 0

5457 − 5000.96
= 0.224,

bank = −102 × 0.965

(1.053 − 0.965)1.0033
= −1115,

value(C) = 0.4338 × 102 = 44.25.

In the lowest node at t = 2 (see Figure 5.6), there is nothing to hedge because
the option will finish out of the money. Consequently, the replicating portfolio is
characterized by

delta = 0, bank = 0, value = 0.

5.3.5 Dynamic Hedging at t = 1

The conclusion of the previous section is that at time t = 2 we need £317.54 in the
highest node, £44.25 in the middle node and £0 in the lowest node to replicate the
option payoff at t = 3. Our task has now shifted forward by one period. At t = 1
we no longer attempt to replicate the payoff of the option at t = 3; instead we try
to replicate the amount of money at t = 2 needed to replicate the option payoff at
t = 3.
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Stock price 5954.64
5654.93

5370.30 5457.00
5100.00 5182.34

4921.50 5000.96
4749.25

4583.02

599.64
317.54

? 102.00
? 44.25

? 0.00
?

0.00

Value of replicating portfolio

t = 0 t = 1 t = 2 t = 3

Figure 5.6. One-period model determining the value of
option replicating portfolio when S2 = 4749.25.

Stock price 5954.64
5654.93

5370.30 5457.00
5100.00 5182.34

4921.50 5000.96
4749.25

4583.02

599.64
317.54

? 102.00
? 44.25

? 0.00
0.00

0.00

Value of replicating portfolio

t = 0 t = 1 t = 2 t = 3

Figure 5.7. One-period model determining the value of
option replicating portfolio at t = 1 when S1 = 5370.30.

More specifically, in the upper node at time t = 1 (see Figure 5.7) the value to be
replicated is [

Cu

Cd

]
=
[

317.54
44.25

]
,

with the corresponding stock prices[
Su

Sd

]
=
[

5654.93
5182.34

]
.
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Stock price 5954.64
5654.93

5370.30 5457.00
5100.00 5182.34

4921.50 5000.96
4749.25

4583.02

599.64
317.54

162.66 102.00
? 44.25

? 0.00
0.00

0.00

Value of replicating portfolio

t = 0 t = 1 t = 2 t = 3

Figure 5.8. One-period model determining the value of
option replicating portfolio at t = 1 when S1 = 4921.50.

From (5.9)–(5.11)

delta = 317.54 − 44.25

5654.93 − 5182.34
= 0.578,

bank = 44.25 × 1.053 − 317.54 × 0.965

(1.053 − 0.965)1.0033
= −2943,

value = 0.4338 × 317.54 + 0.5629 × 44.25 = 162.66.

The situation at the lower node at t = 1 is depicted in Figure 5.8:

delta = 44.25 − 0

5182.34 − 4749.25
= 0.102,

bank = −44.24 × 0.965

(1.053 − 0.965)1.0033
= −484,

value = 0.4338 × 44.25 = 19.19.

5.3.6 Hedging at t = 0

Finally, at t = 0 we are replicating the cost at t = 1 needed to replicate the cost
at t = 2 needed to replicate the option payoff at t = 3. This may sound very
complicated, but it is no more difficult than any of the previous steps.

Referring to Figure 5.9 we have

delta = 162.66 − 19.19

5370.30 − 4921.50
= 0.320,

bank = 19.19 × 1.053 − 162.66 × 0.965

(1.053 − 0.965)1.0033
= −1544,

value = 0.4338 × 162.66 + 0.5629 × 19.19 = 81.36,
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Stock price 5954.64
5654.93

5370.30 5457.00
5100.00 5182.34

4921.50 5000.96
4749.25

4583.02

599.64
317.54

162.66 102.00
? 44.25

19.19 0.00
0.00

0.00

Value of replicating portfolio

t = 0 t = 1 t = 2 t = 3

Figure 5.9. One-period model determining the value of
option replicating portfolio at t = 0.[

Cu

Cd

]
=
[

162.66
19.19

]
,[

Su

Sd

]
=
[

5370.30
4921.50

]
.

5.3.7 Self-Financing Trading Strategy and Option Pricing

To conclude, we have devised a self-financing trading strategy which costs £81.36
and without adding extra resources along the way it generates, after three months,
the same payoff as the call option. In other words, we have found a perfect hedge
for the option which costs £81.36, consequently £81.36 is the no-arbitrage price
of the call option at t = 0. If the option were more expensive we would sell (or
borrow) the option and buy the self-financing portfolio, and vice versa.

Note that the term ‘self-financing’ relates only to the interim dates t = 1, 2;
at t = 0 one has to put in £81.36, at t = 3 one will collect a random amount
depending on the terminal stock price.

The entire replicating strategy is summarized in Figure 5.10. The values in Fig-
ure 5.10 are precise to the last decimal place, while the values that we have calculated
above differ slightly due to rounding errors.

5.3.8 Numerical Implementation

The binomial option pricing model of this section is implemented as a MATLAB
program chapter5sect3.m and as an Excel spreadsheet chapter5sect3.xls. The MAT-
LAB program stores stock and option prices in a square matrix, where the column
index tt corresponds to the time period +1 and the row index ii is equal to the
number of low returns +1 (see Figure 5.11).
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S0 K R_u R_d
5100 5355 1.053 0.965 0.0033

Stock prices
5954.64 599.64

5654.93 317.54
5370.30 5457.00 162.66 102.00

5100.00 5182.34 81.36 44.25
4921.50 5000.96 19.19 0.00

4749.25 0.00
4583.02 0.00

Bank account Number of shares
599.64 0.000

−5337.39 1.000
−2942.92 102.00 0.578 0.000

−1548.87 −1114.88 0.320 0.224
−483.63 0.00 0.102 0.000

0.00 0.000
0.00 0.000

Value of replicating portfolio

t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2 t = 3

r

Figure 5.10. Dynamic self-financing trading strategy that replicates the cash flows
generated by one European call option written on the FTSE 100.

ii

1 5100.00 5370.30 5654.93 5954.64

2 4921.50 5182.34 5457.00

3 4749.25 5000.96

4 4583.02

tt 1 2 3 4

Figure 5.11. Indexation of stock and option prices in a binomial model.
Illustration to the MATLAB program chapter5sect3.m.

%****************%
% market %
%****************%
S0 = 5100; % initial stock price %
strike = 5355;
Rsafe = 1.0033; % monthly safe return %
R = [1.053 0.965]; % monthly stock return %
%*******************%
% Risk-neutral %
% probabilities %
%*******************%
QDistr = [Rsafe-R(2) R(1)-Rsafe]./(R(1)-R(2));

%*********************%
% grid indexation %
%*********************%
Tidx = 4; % number of trading dates %
dlnS = log(R(1))-log(R(2)); % increment on log price grid %
highlnR = log(R(1)); % the highest return over one period %
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%there are tt live cells at time tt, highest stock price at the top
%log price at cell 1 at time tt is ln(S0)+(tt-1)*highlnR
%log price at cell ii at time tt is ln(S0)+(tt-1)*highlnR-(ii-1)*dlnS

C = zeros(Tidx,Tidx); % initialize the grid for call option price %
stock = zeros(Tidx,Tidx); % initialize the grid for stock price %
delta = zeros(Tidx,Tidx); % initialize the grid for option delta %

%*******************%
% option payoff %
%*******************%
lnS_T = log(S0)+(Tidx-1)*highlnR ...

-(0:(Tidx-1))*dlnS; % log(S) at maturity %
S_T = exp(lnS_T’); % stock price at maturity %
C_T = max([(S_T-strike)’;zeros(1,length(S_T))]); % option payoff at maturity %
stock(:,Tidx) = S_T; % stock price grid at maturity %
C(:,Tidx) = C_T’; % option price = option payoff at T %

%***************%
% main loop %
%***************%
for tt = Tidx-1 : -1 : 1
for ii = 1 : 1 : tt
stock(ii,tt) = S0*exp((tt-1)*highlnR-(ii-1)*dlnS);
C(ii,tt) = (QDistr*C(ii:ii+1,tt+1))/Rsafe; % risk-neutral pricing %
delta(ii,tt) = (C(ii,tt+1)-C(ii+1,tt+1))...
/(R(1)-R(2))/stock(ii,tt);
end
end

5.4 Risk-Neutral Probabilities in a Multi-Period Model

In the preceding section we have computed an entire self-financing strategy which
generates the option value at expiry, and we have concluded that the initial outlay
of this strategy must be equal to the initial option price. It is remarkable that the
option value can be computed without knowing the option delta; indeed, looking at
equation (5.13), one only needs to know option values in the next period to work
out the current value of the option.

This result is not accidental. Each one-period submodel we have dealt with in
the previous section is complete. Chapter 2 tells us that every complete market has
a unique set of state prices which moreover only depend on the basis asset returns
(see (2.35)). In our particular case asset returns are IID, which means they are the
same in all one-period submodels, which implies one has the same pricing equation,
namely (5.13), in all of them.

Chapter 2 also tells us that we can rephrase state prices in terms of risk-neutral
probabilities; specifically, the no-arbitrage price of payoff[

Cu

Cd

]
is given as the risk-neutral expectation of the discounted payoff

no-arbitrage value(C) = quCu + qdCd

Rf
, (5.14)
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where the risk-neutral probabilities qu and qd are chosen such that the risk-neutral
expectation of return on all basis assets is equal to the risk-free return,

qu + qd = 1,

quRu + qdRd = Rf.

This gives conditional risk-neutral probabilities,

qu = Rf − Rd

Ru − Rd
= 1.0033 − 0.965

1.053 − 0.965
= 0.435 23, (5.15)

qd = Ru − Rf

Ru − Rd
= 1.053 − 1.0033

1.053 − 0.965
= 0.564 77, (5.16)

and the valuation formula

no-arbitrage value(C) = 0.435 23Cu + 0.564 77Cd

1.0033
. (5.17)

Note that (5.17) is identical to (5.13), that is, risk-neutral probabilities are a clever
mathematical shortcut for writing down the no-arbitrage value of a replicating port-
folio.

5.4.1 Valuation Formula as a Conditional Expectation

Denoting Ct the option price at time t we can write the option pricing formula (5.17)
more elegantly as a conditional expectation:

C2 = EQ
2

[
C3

Rf

]
. (5.18)

The letter Q in EQ
2 denotes risk-neutral probability, the subscript ‘2’ in EQ

2 signifies
the expectation conditional on the information at time t = 2. In words the option
value at time t = 2 is the risk-neutral expectation, conditional on the information
at time t = 2, of the option price at time t = 3 discounted at the risk-free rate.
The nice thing about equation (5.18) is that it holds for all nodes at time t = 2
simultaneously, namely, the statement

C2 = EQ
2

[
C3

Rf

]
is, in our model, equivalent to three separate identities (see Figure 5.12):

317.54 = 599.64qu + 102.00qd

1.0033
,

44.25 = 102.00qu + 0.00qd

1.0033
,

0.00 = 0.00qu + 0.00qd

1.0033
.

Similarly, the option price in all nodes at time t = 1 can be expressed in terms of
C2 as

C1 = EQ
1

[
C2

Rf

]
. (5.19)
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Option price 599.64
0.43522

317.54
0.43522

0.56478
162.65 102.00

0.43522
0.56478

0.43522
81.36 44.25

0.56478
0.43522

0.56478
19.19 0.00

0.56478
0.43522

0.00
0.56478

0.00

t = 0 t = 1 t = 2 t = 3

Figure 5.12. Illustration to conditional expectation EQ
2 [C3]/Rf .

Option price 599.64
0.43522

317.54
0.43522

0.56478
162.65 102.00

0.43522
0.56478

0.43522
81.36 44.25

0.56478
0.43522

0.56478
19.19 0.00

0.56478
0.43522

0.00
0.56478

0.00

t = 0 t = 1 t = 2 t = 3

Figure 5.13. Illustration to conditional expectation EQ
1 [C2]/Rf.

This expression stands for two equalities

162.65 = 317.54qu + 44.25qd

1.0033
,

19.19 = 44.25qu + 0.00qd

1.0033
,

graphically depicted in Figure 5.13.
Finally,

C0 = EQ
0

[
C1

Rf

]
(5.20)

means

81.36 = 162.65qu + 19.19qd

1.0033
. (5.21)

Because the information at t = 0 is very simple (there is only one node in the
decision tree at t = 0) E0[.] is often called the unconditional expectation and the
subscript ‘0’ is often dropped.
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Option price 599.64
0.43522

317.54
0.43522

0.56478
162.65 102.00

0.43522
0.56478

0.43522
81.36 44.25

0.56478
0.43522

0.56478
19.19 0.00

0.56478
0.43522

0.00
0.56478

0.00

t = 0
28 Jan

t = 1
28 Feb

t = 2
28 Mar

t = 3
28 Apr

Figure 5.14. Unconditional risk-neutral probability of reaching C3 = 599.64.

To summarize, by substituting (5.18) into (5.19) and the resulting expression into
(5.20) we have shown that

C0 = EQ

[
1

Rf
EQ

1

[
1

Rf
EQ

2

[
C3

Rf

]]]
,

which can be simplified to

C0 = 1

R3
f

EQ[EQ
1 [EQ

2 [C3]]] (5.22)

due to the fact that Rf is constant.

The law of iterated expectations (sometimes called Bayes law) states that in a
chain of conditional expectations the one with the lowest time index prevails, and
consequently we obtain the dynamic no-arbitrage pricing formula:

C0 = 1

R3
f

EQ[C3].

5.5 The Law of Iterated Expectations

The law of iterated expectations is a natural consequence of the properties of condi-
tional probabilities. To convince the reader that the law uses only very elementary
operations, we will demonstrate that it works in our specific option example. This
involves showing that

1

R3
f

EQ[EQ
1 [EQ

2 [C3]]] = 1

R3
f

EQ[C3]. (5.23)

Recall from (5.21) that the left-hand side is equal to 81.36. Before we can evaluate
the right-hand side, we need to find the distribution of C3 as seen at time t = 0.

There is only one path starting at t = 0 that reachesC3 = 599.64 (see Figure 5.14),
and the risk-neutral probability of following this path is simply the product of one-
step conditional probabilities on this path (this is a consequence of the chain rule
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599.64
317.54

162.66 102.00
81.36 44.25

19.19 0.00
0.00

0.00

599.64
317.54

162.66 102.00
81.36 44.25

19.19 0.00
0.00

0.00

599.64
317.54

162.66 102.00
81.36 44.25

19.19 0.00
0.00

0.00

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

Figure 5.15. Paths reaching C3 = 102.00.

for conditional probabilities discussed in Appendix B). Mathematically,

Q(C3 = 599.64 | S0 = 5100) = q3
u = 0.082 44.

There are three ways to reach C3 = 102.00, which are depicted in Figure 5.15.
The probability of each of these paths is q2

uqd because in each case we go up twice
and down once. As a result

Q(C3 = 102.00 | S0 = 5100) = 3q2
uqd = 3 × 0.435 222 × 0.564 78 = 0.320 94.

In the remaining cases C3 = 0.00 and hence

Q(C3 = 0.00 | S0 = 5100) = 1 − 0.082 44 − 0.320 94 = 0.596 62.

With the distribution of C3 (as of t = 0) in hand it is straightforward to evaluate
the right-hand side of (5.23),

1

R3
f

EQ[C3] = 0.082 44 × 599.64 + 0.320 94 × 102.00 + 0.596 62 × 0.00

1.00333

= 81.36;
thus we have

1

R3
f

EQ[EQ
1 [EQ

2 [C3]]] = 1

R3
f

EQ[C3].
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5.6 Summary

• A multi-period model of financial markets is complete as long as all one-period
models corresponding to individual nodes in the decision tree are complete.

• The complete market model with stock and risk-free short-term borrowing
makes many simplifying assumptions. The most crucial are absence of trans-
action costs and limited short-term variability in stock prices—we can allow
for only two values of stock return over any one period. The risk-free rate can
vary over time as long as its variation depends only on the history of stock
prices.

• In a complete market with stock and risk-free borrowing any cash flow that
depends only on the stock price history has a unique no-arbitrage price. The
no-arbitrage price is equal to the cost of a self-financing portfolio that exactly
replicates the cash flow. We have used the example of a European call option
which has a particularly simple cash flow with payoff only at expiry date.
Security with payoffs at multiple dates can be thought of as a portfolio of
simpler securities, each with payoff at only one date. In conclusion, the no-
arbitrage price of any security is equal to the risk-neutral expectation of the
present discounted value of the cash flow it generates. In the European call
option example

C0 = EQ

[
max(ST − K, 0)

Rf 0Rf 1 · · ·Rf T−1

]
.

• In this chapter objective and risk-neutral probabilities appear side by side for
the first time. Roughly speaking, risk-neutral probabilities reflect the price
of wealth in individual states of the market (state prices), whereas objective
probabilities tell us how likely those states are to occur.

5.7 Notes

The binomial lattice model of stock prices is due to Sharpe (1978). The risk-neutral
valuation approach is due to Ross (1978); more explicit discussion of binomial
model appears in Cox et al. (1979).

5.8 Exercises

Exercise 5.1 (calibration of a binomial tree and option pricing). From the data
we know the following parameters: the monthly risk-free rate is 0.5%, expected
monthly rate of stock return is 1%, monthly volatility σ (standard deviation) of the
stock return is 3%. Price a European call option (an option to buy the stock at
maturity at the strike price) with three months to expiry and strike price K = £10.1.
Assume that current stock price is S0 = £10 (the option is initially 1% out of the
money). Proceed in the following steps.

(a) Calibrate a binomial tree to the stock expected return and volatility, assuming
that the one-step conditional probabilities are pu = pd = 1

2 at each node.
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Stock prices

Bank account Number of shares

Value of replicating portfolio

t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2 t = 3

Figure 5.16. Replicating portfolio.

4.00
2.00 0.20

1.00 0.15 2.00
1.00 0.10

1.00

t = 0 t = 1 t = 2

Figure 5.17. Binomial stock price model, no dividends,
stock prices at the nodes, risk-free rate of return between branches.

Take one step to be equal to one month.

Ru =
Rd =

(b) Find the self-financing portfolio that replicates the payoff of the call option.
In Figure 5.16 write down how much money you have to keep in the bank and
how many units of stock you want to hold.

(c) How is the option price related to the value of the self-financing portfolio in
(b)? Circle one answer.

(i) The option price is always greater than the value of the self-financing
replicating portfolio.

(ii) The two are always the same.

(iii) The option price is always smaller.

(iv) The relationship changes from node to node.

Exercise 5.2 (path-dependent risk-neutral probabilities and asset pricing).
Consider the stock price model in Figure 5.17.
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1.00

1.00

1.00

t = 0 t = 1 t = 2

Figure 5.18. No-arbitrage value of pure discount bond with maturity at t = 2.

0.00

1.00

2.00

t = 0 t = 1 t = 2

Figure 5.19. No-arbitrage value of a European put option with strike K = 3.

(a) Compute risk-neutral probabilities in each one-period submodel.

(i) At t = 0:

qu =
qd =

(ii) At t = 1 in the upper node:

qu =
qd =

(iii) At t = 1 in the lower node:

qu =
qd =

(b) How would the answer in part (a) change if the stock also paid a dividend
equal to 5% of its price?

(c) Suppose we want to price a security with payoff 1 at t = 2 (the so-called
pure discount bond). Find the no-arbitrage price of the pure discount bond
at t = 0, 1 and write it into the tree in Figure 5.18. Use the risk-neutral
probabilities calculated in part (a).

(d) Price a European put option on the stock with strike K = 3. Write the no-
arbitrage value of the option into the tree in Figure 5.19. Use the risk-neutral
probabilities calculated in part (a).

Exercise 5.3 (consumption budget). Figure 5.20 depicts stock price scenarios over
three dates t = 0, 1, 2 and the associated consumption levels of an investor. For
example, when the stock market is doing well at t = 1, the investor will consume
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Stock price

1.44
1.2

1
1

1

Consumption stream
900

700
500 700

500
500

t = 0 t = 1 t = 2

1.2

Figure 5.20. Stock prices and corresponding consumption levels.

£700 a month, whereas if the stock market is performing poorly at t = 1 she will
only consume £500.

(a) Calculate how much wealth is needed to finance this consumption strategy if
the one-period risk-free rate is 5% and the investor can freely trade in stocks
and use the safe bank account.

(b) Consider a general consumption stream c0, c1, c2. Use expectation under
risk-neutral probability to express the fact that the consumption stream c0, c1,
c2 can be financed by initial wealth V0.

Exercise 5.4 (calibration in trinomial lattice). Suppose the return on a stock can
take three values: u, 1 and 1/u with probabilities p1, p2 and p3. Find the values
of p1, p2 and p3 that will give an expected rate of return of 6% and a standard
deviation of the rate of return equal to 10%.

(a) For u = 1.10:

p1 =
p2 =
p3 =

(b) For u = 1.13:

p1 =
p2 =
p3 =



6
Towards Continuous Time

In the previous chapter we considered a trading interval of one month. In this chapter
we will use the same option pricing model, but we will reduce the trading interval
to one week, one day, one hour, one minute, etc., to obtain the continuous-time
no-arbitrage value of the option in the limit. However, we will see that there are
two ways of reaching the limit. In the first case the logarithm of the stock price
is subject to random but continuous movements up or down in what is known as
Brownian motion; in the second case the stock price moves deterministically in one
direction most of the time but once in a while it jumps in the opposite direction
by a predetermined amount. The second type of limit is called the Poisson jump
process. Looking ahead the Brownian motion limit is closely related to the Itô
process, whereas the Poisson jump limit is a special case of the Lévy process.

6.1 IID Returns, and the Term Structure of Volatility

Assume trading takes place every 5 min; this is frequent enough for most traders.
The simplest model assumes that the 5 min returns are independent and identically
distributed (IID). Our goal is to examine the distribution of returns on lower fre-
quencies, say hourly, daily or weekly. Let us denote by R1(5 min) the return over
the first 5 min, by R2(5 min) the return over the second 5 min, and so on. The return
over the first hour will be

Rhour = R1(5 min)R2(5 min) · · ·R12(5 min).

It is much easier to work with sums than to work with products; a useful trick is to
apply logarithms to both sides, yielding

ln Rhour = ln R1(5 min) + ln R2(5 min) + · · · + ln R12(5 min).

To continue with the argument we will require several elementary properties of
random variables, which are summarized in the box overleaf. Because the 5 min
returns are independent and identically distributed, so are the log returns. If log
returns are independent, they are necessarily uncorrelated; therefore, it is easy to
compute the mean and the variance of ln Rhour using rules (6.1) and (6.2),

E[ln Rhour] = 12E[ln R(5 min)],
Var(ln Rhour) = 12 Var(ln R(5 min)).
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%***************************%
% trading time %
% parameters %
%***************************%
Minute = 1;
Hour = 60;
HoursInDay = 8;
DaysInWeek = 5;
DaysInMonth = 21;
Day = HoursInDay*Hour;
Week = DaysInWeek*Day;
Month = DaysInMonth*Day;
Year = 12*Month;

Figure 6.1. Trading time parameters in MATLAB.

The mean and variance of hourly log returns are, in an IID model, 12 times higher
than the mean and variance of 5 min log returns. Mean and variance of log returns
grow linearly with the time horizon.

Facts.

• For any collection of random variables X1, X2, . . . , Xn

E[X1 + X2 + · · · + Xn] = E[X1] + E[X2] + · · · + E[Xn], (6.1)

expectation of a sum = sum of expectations.

• If X1, X2, . . . , Xn are independent random variables, then for any func-
tions f1, f2, . . . , fn the random variables f1(X1), f2(X2), . . . , fn(Xn) are
again independent.

• Independent random variables are uncorrelated (however, uncorrelated ran-
dom variables need not be independent).

• For uncorrelated random variables X1, X2, . . . , Xn we have

Var(X1 + X2 + · · · + Xn) = Var(X1) + Var(X2) + · · · + Var(Xn),

(6.2)

variance of a sum = sum of variances.

6.1.1 Trading Time

Consider the daily log returns. It is important to realize that a particular stock
exchange is not open 24 hours a day, 7 days a week but that it typically runs during
normal working hours, 9.00 a.m. to 5.00 p.m. Monday to Friday. Outside this time
stocks are not traded and therefore there is no movement in their price; it is as if
time stops. Thus, a calendar day has 24 hours, a trading day only 8. A calendar
week has 7 days, a trading week 5, etc. (see Figure 6.1).

Because there are only 480 min in a trading day we should expect

Var(ln Rday) = 480

5
Var(ln Ri(5 min)) = 96 Var(ln Ri(5 min)).

If we judged the situation mechanically and simply used calendar time, the variance
of daily return in the model would come out three times higher!
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• In a model with IID returns the mean and variance of log returns grow
linearly with the time horizon. This is known as the linear law for mean
and variance. The linear law gives a good match with the observed data
when the time horizon is measured in trading time.

• The returns on a daily horizon are so small that we can write a first-order
Taylor expansion ln Rday = Rday − 1 with very high precision and then

E[ln Rday] = E[Rday − 1] = E[Rday] − 1,

Var(ln Rday) = Var(Rday − 1) = Var(Rday).

Thus for time horizons up to one day we can remove the word ‘log’ in the
previous bullet point.

• If the variance of returns grows linearly with time, then the standard de-
viation, also called the volatility, must grow as a square root of time. The
square root law for volatility of returns was observed as early as 1863 on
the Paris Bourse.

6.2 Towards Brownian Motion

6.2.1 Model of Daily Returns

Recall that in Chapter 5 we calibrated monthly stock returns as follows:

Ru(month) = 1.053 with pu = 1
2 , (6.3)

Rd(month) = 0.965 with pd = 1
2 , (6.4)

Rf(month) = 1.0033. (6.5)

We now wish to construct a model with daily log returns that would be consistent with
the expected monthly log return and its volatility. The simplest way of achieving
that is to construct the monthly log return first and then scale it according to the
linear law for the mean and variance discussed above. The following properties of
mean and variance will be useful.

• Let X be a random variable, and a, b constants. Then

E[a + bX] = a + bE[X], (6.6)

Var(a + bX) = Var(bX) = b2 Var(X). (6.7)

• For the volatility, Std(X) = √
Var(X), we have

Std(a + bX) = Std(bX) = |b| Std(X). (6.8)

Since the mean grows linearly with time, whereas volatility obeys the square root
law, the right thing to do is to decompose the monthly log return into two parts, one
non-random and one random with mean zero,

ln Rmonth = E[ln Rmonth]︸ ︷︷ ︸
non-random

part

+ (ln Rmonth − E[ln Rmonth])︸ ︷︷ ︸
random part

with mean zero

,
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and then scale the first part by 1
21 and the second part by

√
1
21 (remember, a month

has 21 trading days),

ln Rday = 1
21 E[ln Rmonth] +

√
1

21 (ln Rmonth − E[ln Rmonth]). (6.9)

One can verify using rules (6.6) and (6.7) that in this way we will obtain

E[ln Rday] = 1
21 E[ln Rmonth],

Var(ln Rday) = 1
21 Var(ln Rmonth),

as required by the linear law for mean and variance.
The safe return, too, obeys the rule (6.9):

ln Rf(day) = 1
21 ln Rf(month). (6.10)

Numerically,

E[ln Rmonth] = pu ln Ru(month) + pd ln Rd(month)

= 0.0516

2
− 0.0356

2
= 0.008,

ln Ru(day) = 0.008

21
+
√

1

21
(0.0516 − 0.008) = 0.009 90,

ln Rd(day) = 0.008

21
+
√

1

21
(−0.0356 − 0.008) = −0.009 13,

ln Rf(day) = 1
21 ln(1.0033) = 1.6 × 10−4.

6.2.2 Numerical Implementation

Now we can run through the standard pricing routine of Chapter 5:

Ru(day) = eln Ru(day) = e0.009 90 = 1.009 95,

Rd(day) = eln Rd(day) = e−0.009 13 = 0.990 91,

Rf(day) = Rf(month)1/21 = 1.00331/21 = 1.000 16,

qu(day) = Rf(day) − Rd(day)

Ru(day) − Rd(day)
= 1.000 16 − 0.990 91

1.009 95 − 0.990 91
= 0.486,

qd(day) = 0.514.

The option expires in three months, each month now has 21 trading days, which
gives in total 63 trading periods. One could fit this into an Excel spreadsheet, but with
a growing number of trading periods this solution becomes less and less practical;
for example, a model with hourly rebalancing has as many as 8×63 = 504 periods.

It is more productive to adapt the option pricing code of Chapter 5 to the new
circumstances. With the trading time parameters defined in Figure 6.1 we can
program the scaling properties (6.9) and (6.10) very easily (see Figure 6.2).

The main body of the program remains the same, except with a high number of
trading dates we cannot afford to store the option prices for all the values of stock
price and all intermediate dates; it requires too much memory and slows down the
program. Fortunately, it is enough to know the option prices in the next period to
find the option price in the current period, so at any time in the program one only
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%***************************%
% Hedging Parameters %
%***************************%
T = 3*Month; % Time to maturity %
RehedgeInterval = 1*Day; % Trading period %
S0 = 5100; % Initial stock price %
strike = 5355;

%***************************%
% Transformation of %
% log returns %
%***************************%
UnitTime = Month;
R1safe = 1.0033; % monthly safe return %
R1 = [1.053 0.965]; % monthly return %
PDistr = [0.5 0.5]; % prob. density of monthly returns %
lnR1 = log(R1); % monthly log return %
mu1 = lnR1 * PDistr’; % expected monthly log return %
sig1= sqrt(((lnR1-mu1).ˆ2)*PDistr’); % volatility of monthly log return %

dt = RehedgeInterval/UnitTime;
lnRdt = mu1*dt+(lnR1-mu1)*sqrt(dt); % log return over rehedging interval %
Rdt= exp(lnRdt);
Rdtsafe=R1safeˆdt;

%************************%
% Risk-neutral %
% probabilities %
%************************%
QDistr=[Rdtsafe-Rdt(2) Rdt(1)-Rdtsafe]./(Rdt(1)-Rdt(2));

Figure 6.2. Brownian scaling of returns.

Table 6.1. No-arbitrage option price for different rebalancing intervals.

Trading interval 1 month 1 day 1 hour 30 min

Option price 81.364 3 76.085 9 75.982 2 75.941 4
Option delta 0.319 65 0.317 03 0.316 78 0.316 71

needs to remember the last column of option prices. The modified pricing algorithm
is shown in Figure 6.3.

The entire program is in the file chapter6sect2a.m; the reader should try different
rebalancing frequencies by changing the parameter RehedgeInterval. The
output is summarized in Table 6.1.

6.2.3 Distribution of Log Returns in the Limit

The prices in Table 6.1 are different for each length of the trading interval, although
they do not change very much as we shorten the trading interval from 1 day to 1 hour
to 30 min. Why are the prices different? First of all the conditional risk-neutral
probabilities are different in each model. Secondly, the risk-neutral distribution of
the unconditional three-month return will be different in each model. Consider the
model with monthly rebalancing; this model has three periods and the log return after
three months will be either 3 ln Ru or 2 ln Ru+ln Rd or ln Ru+2 ln Rd or 3 ln Rd with
probabilities q3

u , 3q2
uqd, 3quq

2
d and q3

d , respectively. These probabilities (divided by
ln Ru − ln Rd) are plotted in Figure 6.4.
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%************************%
% grid indexation %
%************************%
Tidx=ceil(T/RehedgeInterval)+1; % Number of trading dates %
dlnS=lnRdt(1)-lnRdt(2); % increment on log price grid %
highlnRdt=lnRdt(1); % the highest return over one period %

% there are tt live cells at time tt, highest stock price at the top %
% log price at cell 1 at time tt is ln(S0)+(tt-1)*highlnRdt %
% log price at cell ii at time tt is ln(S0)+(tt-1)*highlnRdt-(ii-1)*dlnS %

%************************%
% option payoff %
%************************%
lnS_T= log(S0)+(Tidx-1)*highlnRdt...

-(0:(Tidx-1))*dlnS; % log(S) at maturity %
S_T= exp(lnS_T’); % stock price at maturity %
C= max([(S_T-strike)’;zeros(1,length(S_T))]); % option payoff at maturity %

%************************%
% main loop %
%************************%
for tt= Tidx-1:-1:1
Cnext = C; % next-period option value %
for ii = 1:1:tt
C(ii)=(QDistr*Cnext(ii:ii+1)’)/Rdtsafe; % risk-neutral pricing %

end
end

Figure 6.3. Modification of binomial pricing algorithm that
only remembers the latest set of option prices.
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Figure 6.4. Unconditional risk-neutral distribution of
log stock return. Trading interval one month.

Now take the model with daily rehedging. It has 63 periods and the three-month
log return can now range from 63 ln Ru to 63 ln Rd. Specifically, the risk-neutral
probability of achieving a log return of size n ln Ru + (63 − n) ln Rd is

63!
n!(63 − n)!q

n
u q

63−n
d .

The risk-neutral probabilities (again divided by ln Ru − ln Rd) are plotted in Fig-
ure 6.5.

Finally, we will perform the same exercise in a model with hourly rehedging
(504 periods; see Figure 6.6). Comparing Figure 6.5 with Figure 6.6 one can guess
that the shape of the risk-neutral distribution of the three-month log return does not
change very much as the trading interval goes to zero, and this is why the option
price settles down.
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Figure 6.5. Unconditional risk-neutral distribution of
log stock returns. Trading interval one day.

Facts.

• The limiting shape of the risk-neutral distribution of the three-month log
return is normal distribution.

• The normal distribution has two parameters, the mean m and variance s2.
If X is a normal random variable with mean m and variance s2, we will
write

X ∼ N(m, s2).

The distribution N(0, 1) is called standard normal.
• Suppose that X ∼ N(m, s2). Then the probability of X lying in a small

interval around value x, divided by the size of that interval, is

f (x) = 1√
2πσ

exp

(
− 1

2

(x − m)2

s2

)
.

Mathematically,

lim
�x→0

Pr(x � X < x + �x)

�x
= 1√

2πσ
exp

(
− 1

2

(x − m)2

s2

)
.

In other words, with the correct choice of m and s the curve f (x) will be
the limit of the bell-shaped patterns in Figures 6.4–6.6.

6.2.4 Mean and Variance of the Risk-Neutral Distribution of Log Returns

The aim of this section is to find the mean and variance of the limiting distribution
in Figure 6.6. Denote by Q�t the risk-neutral probability measure generated by a
binomial model with rehedging interval �t . We wish to find

lim
�t→0

EQ�t [ln R(T )], (6.11)

lim
�t→0

VarQ�t (ln R(T )). (6.12)
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Figure 6.6. Unconditional risk-neutral distribution of
log stock returns. Trading interval one hour.

We shall take as given that the one-period returns are independent under Q�t (this
is in fact obvious, but we lack the necessary terminology at this stage; it will be
introduced in Chapter 8 and Appendix B). Then we can apply rules (6.1) and (6.2)
under Q�t , yielding

EQ�t [ln R(T )] = T

�t
EQ�t [ln R(�t)], (6.13)

VarQ�t (ln R(T )) = T

�t
VarQ�t (ln R(�t)). (6.14)

Since the rehedging interval is very short, by necessity both

EQ�t [ln R(�t)] and VarQ�t (ln R(�t))

are small. Suppose we can show that

EQ�t [ln R(�t)] = µQ�t + o(�t), (6.15)

VarQ�t (ln R(�t)) = σ 2
Q�t + o(�t), (6.16)

for some constants µQ, σQ. The combination of (6.13) and (6.14) with (6.15) and
(6.16) then implies

lim
�t→0

EQ�t [ln R(T )] = µQT, (6.17)

lim
�t→0

VarQ�t (ln R(T )) = σ 2
QT . (6.18)

Our task has simplified to finding µQ and σ 2
Q. To find µQ we must evaluate

the left-hand side of (6.15) and in order to do this we need to approximate the
risk-neutral probabilities qu(�t), qd(�t). Exercise 6.1 shows that

qu(�t) = pu + ξ
√
�t + o(

√
�t), (6.19)

qd(�t) = pd − ξ
√
�t + o(

√
�t), (6.20)

with

ξ = r − µ

ln Ru(1) − ln Rd(1)
− 1

2σ
2, (6.21)
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where µ is the expected monthly log return, σ 2 is the variance of the monthly log
return (see Exercise 6.2), and r is the risk-free monthly log return,

µ := E[ln R(1)], (6.22)

σ 2 := Var(ln R(1)), (6.23)

r := ln Rf(1). (6.24)

In analogy with equations (6.9) and (6.10), the return over period �t is given by

ln R(�t) := µ�t + √
�t(ln R(1) − µ), (6.25)

ln Rf(�t) := r�t. (6.26)

Exercise 6.3 shows that (6.25) together with (6.19) and (6.20) imply

EQ�t [ln R(�t)] = (µ + ξ(ln Ru(1) − ln Rd(1))︸ ︷︷ ︸
r−σ 2/2

)�t + o(�t), (6.27)

VarQ�t (ln R(�t)) = σ 2�t + o(�t), (6.28)

which, after comparison with (6.15) and (6.16), finally gives

µQ = r − 1
2σ

2,

σ 2
Q = σ 2.

Equations (6.17) and (6.18) then yield the desired result,

lim
�t→0

EQ�t [ln R(T )] = (r − 1
2σ

2)T ,

lim
�t→0

VarQ�t (ln R(T )) = σ 2T .

In the Brownian motion limit as �t goes to zero the risk-neutral distribution of
ln R(T ) tends to normal distribution with mean (r − 1

2σ
2)T and variance σ 2T .

6.2.5 Black–Scholes Option Pricing Formula

1. Recall that the option price is the risk-neutral expectation of the option payoff
discounted by the risk-free rate,

C0 = e−rT EQ[CT ]. (6.29)

2. The option payoff is a (piecewise linear) function of the terminal stock price,

CT =
{
ST − K if ST > K,

0 if ST � K.

3. The log return is normally distributed under probability measure Q,

ln R(T )
Q∼ N((r − 1

2σ
2)T , σ 2T ).
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4. The terminal stock price is a product of the initial stock price and the three-
month return,

ST = S0R(T ),

ln ST = ln S0 + ln R(T ).

Consequently, the risk-neutral distribution of ln ST is

ln ST
Q∼ N(ln S0 + (r − 1

2σ
2)T , σ 2T ). (6.30)

We can now rewrite the option pricing formula (6.29) as follows,

C0 = e−rT EQ[(eln ST − eln K)1ln ST >ln K ], (6.31)

where 1ln ST >ln K is a step function

1X>a :=
{

1 for X > a,

0 for X � a.

In Appendix A we derive that for X ∼ N(µ̃, σ̃ 2) one has

E[(eX − ea)1X>a] = eµ̃+σ̃ 2/2Φ

(
µ̃ + σ̃ 2 − a

σ̃

)
− eaΦ

(
µ̃ − a

σ̃

)
. (6.32)

We can now apply this result to (6.31) X = ln ST and a = ln K . From (6.30) we
must take

µ̃ = ln S0 + (r − 1
2σ

2)T ,

σ̃ 2 = σ 2T ,

and this gives the celebrated Black–Scholes formula:

C0 = S0Φ

(
ln(S0/K) + (r + σ 2/2)T

σ
√
T

)
−Ke−rT Φ

(
ln(S0/K) + (r − σ 2/2)T

σ
√
T

)
.

Numerically,

S0 = 5100, K = 5355, T = 3,

Ru(1) = 1.053, Rd(1) = 0.965,

µ = 1
2 (ln 1.053 + ln 0.965) = 0.008, (6.33)

σ 2 = 1
4 (ln 1.053 − ln 0.965)2 = 0.0019, (6.34)

r = ln 1.0033,

which yields
C0 = 75.9329.

It is interesting to compare this value with the binomial model prices in Table 6.1.
Note that in our example the evaluation of Black–Scholes formula is roughly a
million times faster than the pricing in a binomial model with a 30 min trading
interval. The differences between the limiting value and the binomial approximation
can be explored by running the MATLAB program chapter6sect2b.m.

It is worth summarizing what the Black–Scholes formula means (see box below).
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Figure 6.7. Movement in a binomial lattice with Brownian motion limit.

• Fix a trading interval of unit time length (say one month) with risk-free
rate r(1) and risky return R(1), where the risky return has two values
over a single trading period (binomial tree). Denote by µ and σ 2 the
mean and variance of ln R(1) under objective probabilities, and define the
continuously compounded interest rate r = ln(1 + r(1)).

• For any shorter trading interval �t define a new model with one-period
risk-free rate r(�t) and risky return R(�t) as follows:

1 + r(�t) := er�t ,

ln R(�t) := µ�t + √
�t(ln R(1) − µ).

In this way we can guarantee that the mean and variance of the log return
over unit time length are always µ and σ 2, respectively.

• Let us denote the no-arbitrage option price in a model with trading interval
�t by C0(�t). As �t goes to zero, the number of trading periods increases
to infinity and the option price converges to the Black–Scholes value:

lim
�t→0

C0(�t) = S0

(
ln(S0/K) + (r + σ 2/2)T

σ
√
T

)

− Ke−rT Φ

(
ln(S0/K) + (r − σ 2/2)T

σ
√
T

)
. (6.35)

This happens because as �t goes to zero the risk-neutral distribution of
the log stock price tends to normal with mean ln S0 + (r − 1

2σ
2)T and

variance σ 2T .

6.2.6 Black–Scholes Delta

Recall from Chapter 5 that the number of shares in the option replicating portfolio
is

delta = Cu − Cd

Su − Sd
.
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In the Brownian motion limit the difference between Cu and Cd goes to zero as �t

becomes very small, and so does the difference between Su and Sd. In the limit the
expression for delta looks like the derivative of C with respect to S. It turns out that
this intuition is correct,

lim
�t→0

Cu(�t) − Cd(�t)

Su(�t) − Sd(�t)
= C′(S),

where C(S) is the Black–Scholes price as a function of initial stock price. Con-
sequently, C′(S) is known as the Black–Scholes delta; its value is computed in
Exercise A.7:

Black–Scholes delta = Φ

(
ln(S/K) + (r + σ 2/2)T

σ
√
T

)
.

Numerically,
Black–Scholes delta = 0.316 68;

compare this value with its binomial counterparts in Table 6.1.

6.3 Towards a Poisson Jump Process

The idea behind the Brownian motion limit was to keep the objective probability
of the high and low log return constant ( = 1

2 ) and let the difference between high
and low log return go to zero as the trading interval goes to zero. The Poisson
limit does exactly the opposite: we will keep the difference between the two log
returns constant and let the probability vary as the trading interval goes to zero. The
probability of a high return will approach 1 and the probability of a low return will
approach zero as the trading interval goes to zero. This means that most of the time
the stock price will be moving smoothly upwards, but once in a while it will jump
down by a prespecified amount J .

Mathematically,

ln Ru(�t) := µ̃�t, (6.36)

ln Rd(�t) = µ̃�t − J,

pu = 1 − λ�t,

pd = λ�t.

6.3.1 Calibration

As before denote by µ and σ 2 the mean and variance of the log return over a time
period of length 1. Exercise 6.4 shows

E[ln R(�t)] = (µ̃ − λJ )�t, (6.37)

Var(ln R(�t)) = J 2λ�t − (Jλ�t)2. (6.38)

We know that the log return over a period of length 1 is the sum of 1/�t log returns
over periods of length �t . In addition the expectation of a sum equals the sum of
expectations, therefore

1

�t
E[ln R(�t)] = E[ln R(1)] = µ. (6.39)
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Figure 6.8. Stock price movement in a binomial lattice with Poisson process limit. Up
movement is proportional to trading interval size, down movement is fixed. There is a much
higher number of up movements (smooth increase in price) than down movements (sudden
price decrease).

By assumption the log returns over disjoint time periods are independent and there-
fore uncorrelated; hence we can use the fact that the variance of a sum equals the
sum of variances,

1

�t
Var(ln R(�t)) = Var(ln R(1)) = σ 2. (6.40)

Substitute (6.39) into equation (6.37) and substitute (6.40) into (6.38) to relate
the unknown parameters J , λ, µ̃ to the observed parameters µ, σ 2,

µ̃ − λJ = µ,

J 2(λ − λ2�t) = σ 2.

Solving for the jump size J and the drift rate µ̃ we find

µ̃(�t) = µ +
√
λσ√

1 − λ�t
, (6.41)

J (�t) = σ√
λ
√

1 − λ�t
. (6.42)

When the rehedging interval is very short, �t ≈ 0, �t has a very small impact on
the value of µ̃ and J ; it is then all right to use the limiting values for µ̃ and J with
�t = 0:

µ̃ = µ̃(0) = µ + √
λσ, (6.43)

J = J (0) = σ√
λ
. (6.44)
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Timet0

ln S0 1 jump

no jumps

2 jumps

3 jumps

Logarithm of
stock price ~ln S0 + µ t

~ln S0 + µ t − J

~ln S0 + µ t − 2J

~ln S0 + µ t − 3J

Figure 6.9. Possible values of the log stock price in the Poisson jump model.

Recall from (6.33) and (6.34) that the observed monthly mean and standard de-
viation of log returns are

µ = 0.0080, σ = 0.0436.

We will see later that λP can be interpreted as the average number of jumps per unit
of time when �t is small. With λP = 1 and a short rehedging interval �t → 0 we
have, from (6.43) and (6.44),

µ̃ = µ + σ = 5.16%, (6.45)

J = σ = 4.36%. (6.46)

With one jump a month on average the jump size is equal to 4.36%, and the stock
price grows at a rate 5.16% per month during periods when no jumps are present.

6.3.2 Stock Price Dynamics

In the Brownian motion limit the log return ln(St/S0) can take any value between
−∞ and ∞. In the Poisson jump model the situation is very different; the log
return ln(St/S0) can only take a discrete set of values corresponding to the number
of jumps between time 0 and time t . Specifically, if the stock price does not jump at
all, then by assumption (6.36) the log return increases linearly with time at rate µ̃:

no jumps in [0, t]: ln(St/S0) = µ̃t.

If exactly one jump occurs somewhere between 0 and t , then the log return at the
end of the time interval will be lower by the size of the jump:

1 jump in [0, t]: ln(St/S0) = µ̃t − J.

If two jumps occur in the time interval [0, t], we have

2 jumps in [0, t]: ln(St/S0) = µ̃t − 2J, etc.

See also Figure 6.9.
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Denote by Nt the number of jumps that occur between 0 and t ; then in general

ln(St/S0) = µ̃t − NtJ, (6.47)

St = S0eµ̃t−NtJ .

We observe that the terminal stock price St is a function of calendar time and the
number of jumps,

St = S(t, Nt ).

In the calibrated model (6.45) and (6.46), the numerical values of the FTSE 100
Index after three months are

S(3, 0︸︷︷︸
no jumps

) = 5100e0.0516×3 = 5953.86, (6.48)

S(3, 1︸︷︷︸
1 jump

) = 5100e0.0516×3−0.0436×1 = 5699.85, (6.49)

S(3, 2︸︷︷︸
2 jumps

) = 5100e0.0516×3−0.0436×2 = 5456.68, (6.50)

S(3, 3︸︷︷︸
3 jumps

) = 5100e0.0516×3−0.0436×3 = 5223.88, etc., (6.51)

by virtue of (6.47).

6.3.3 Distribution of Jumps and Jump Times

The total number of jumps in a given time interval is a random variable. By as-
sumption the numbers of jumps in disjoint time intervals are independent. Math-
ematically, N�t ,N2�t − N�t ,N3�t − N2�t ,N4�t − N3�t , . . . are stochastically
independent random variables. Now we would like to find out the probability that
exactly 0, 1, 2, 3 jumps happen in time interval [0, t].

If the trading period is �t , then in the interval [0, t] we have t/�t trading dates.
The probability of seeing exactly zero low returns over time period [0, t] is

P(no jumps in [0, t])
= P(no jumps in [0,�t] and no jumps in [�t, 2�t] and · · ·︸ ︷︷ ︸

t/�t independent events each with probability pu

)

= pt/�t
u = (1 − λ�t)T/�t .

This probability does not vary much with �t when �t is small; Exercise 6.5 shows
that

lim
�t→0

P(no jumps in [0, t]) = e−λt . (6.52)
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Facts (see Mood et al. 1974). For �t small the probability of having exactly n

low returns is

lim
�t→0

P(Nt = n) = (λt)n

n! e−λt . (6.53)

We say that (in the limit when �t is very small) the number of jumps Nt has
Poisson distribution with arrival intensity λ. The mean and variance of Nt are

E[Nt ] = λt, (6.54)

Var(Nt ) = λt.

Equation (6.54) implies that the arrival intensity λ represents the average number
of jumps per unit of time. Equation (6.52) reveals that the probability of the first
jump arriving in [t, t + dt] is

P(first jump happens in [t, t + dt]) = e−λt︸︷︷︸
no jumps in [0,t]

λ dt︸︷︷︸
1 jump in [t,t+dt]

.

We say that the time of the first arrival has an exponential distribution with
parameter λ.

6.3.4 Risk-Neutral Probabilities

What really matters, as we already know, is the distribution of stock returns under
the risk-neutral probability measure. To this end Exercise 6.6 shows

qu(�t) = 1 + r − µ̃

1 − e−J︸ ︷︷ ︸
λQ

�t + o(�t),

which means that under the risk-neutral probability, jumps arrive with intensity λQ,

λQ = µ̃ − r

1 − e−J
.

Numerically,

λQ = 0.0516 − ln 1.0033

1 − e−0.0436 = 1.132,

that is, under the risk-neutral measure the jumps will arrive more frequently than
under the objective probability measure. The risk-neutral probability of a specific
number of jumps in a given time period can be calculated from (6.53) when λ is
replaced by λQ,

lim
�t→0

Q(Nt = n) = (λQt)n

n! e−λQt .

Specifically, for the three-month period until expiry of the option we have

lim
�t→0

Q(N3 = 0) = e−1.132×3 = 0.0335, (6.55)

lim
�t→0

Q(N3 = 1) = 1.132 × 3e−1.132×3 = 0.1138, (6.56)
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lim
�t→0

Q(N3 = 2) = 1
2 (1.132 × 3)2e−1.132×3 = 0.1932, (6.57)

lim
�t→0

Q(N3 = 3) = 1
6 (1.132 × 3)3e−1.132×3 = 0.2187, etc. (6.58)

6.3.5 Poisson Option Pricing Formula

Let us denote by C(t,Nt ) the option price at time t if the stock price has jumped Nt

times between 0 and t . Recall that the higher the Nt the further out of the money
the option gets. The option pricing formula simply reads

C(0, N0) = e−rT EQ[C(T ,NT )],
where at expiry

C(T ,NT ) = max(ST − K; 0) = max(S0eµ̃T−NT J − K; 0).

We know from (6.48)–(6.51) that the terminal stock price takes discrete values

ST =
[

5953.86︸ ︷︷ ︸
no jumps

5699.85︸ ︷︷ ︸
1 jump

5456.68︸ ︷︷ ︸
2 jumps

5223.88︸ ︷︷ ︸
3 jumps

· · ·]
,

which means the option payoffs are

max(ST − K; 0) =
[

598.86︸ ︷︷ ︸
no jumps

344.85︸ ︷︷ ︸
1 jump

101.68︸ ︷︷ ︸
2 jumps

0.00︸︷︷︸
3 jumps

· · ·] ; (6.59)

from (6.55)–(6.58) the corresponding risk-neutral probabilities are[
0.0335︸ ︷︷ ︸
no jumps

0.1138︸ ︷︷ ︸
1 jump

0.1932︸ ︷︷ ︸
2 jumps

0.2187︸ ︷︷ ︸
3 jumps

· · ·]
. (6.60)

Putting (6.59) and (6.60) together we find the no-arbitrage price of the option

C(0, 0) = 598.86 × 0.0335 + 344.85 × 0.1138 + 101.68 × 0.1932

1.00333 = 78.17.

More generally,

C(t,Nt ) = e−r(T−t)EQ
t [C(T ,NT )]

= e−(λQ+r)(T−t)
∞∑
n=0

max(S0eµ̃T−(n+Nt )J − K; 0)
(λQ(T − t))n

n! .

6.3.6 Poisson Delta

We know from Chapter 5 that the number of shares in the replicating portfolio is
given by

θ = Cu − Cd

Su − Sd
.

In the jump model Sd is far from Su even when the rehedging interval �t is very
small,

Su = S0eµ̃�t = S0 + O(�t),

Sd = S0eµ̃�t−J (�t) = S0e−J + O(�t).
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Similarly, the gap between Cu and Cd does not vanish as �t goes to zero,

Cu = C(�t, 0) = C(0, 0) + O(�t),

Cd = C(�t, 1) = C(0, 1) + O(�t),

hence in the limit

θ(0, 0) = lim
�t→0

Cu − Cd

Su − Sd
= C(0, 0) − C(0, 1)

S0(1 − e−J )
.

We have all the ingredients apart from C(0, 1), which represents the option value
when the initial stock price already includes one jump at time 0. From (6.59) the
option payoff in such a case is

max(ST − K; 0) =
[

344.85︸ ︷︷ ︸
1 jump

101.68︸ ︷︷ ︸
2 jumps

0.00︸︷︷︸
3 jumps

0.00︸︷︷︸
4 jumps

· · ·]
. (6.61)

Because 1 jump has already happened, the corresponding probabilities are again
those given in (6.60); ‘no jumps’is now interpreted as ‘no extra jumps’. Numerically,

C(0, 1) = 344.85 × 0.0335 + 101.68 × 0.1138

1.00333 = 22.90,

θ(0, 0) = C(0, 0) − C(0, 1)

S0(1 − e−J )
= 78.17 − 22.90

5100(1 − e−0.0436)
= 0.254.

6.4 Central Limit Theorem and Infinitely Divisible Distributions

It is remarkable is that in an IID model the shape of the distribution of daily returns
does not depend, well, almost does not depend, on the shape of the distribution of
5 min returns. This result is illustrated in Figure 6.10. The dotted line depicts (an
arbitrarily chosen) distribution of the 5 min return, normalized to have mean zero
and variance one:

Xdot = ln R1 − µ

σ
.

The dashed line depicts a 20 min log return normalized to have mean zero and
variance one,

Xdash = ln R1 + ln R2 + ln R3 + ln R4 − 4µ

2σ
,

the dot-dash line represents the normalized hourly return, and finally the thin line
gives the distribution of a normalized daily log return,

Xthin =
∑96

i=1 ln Ri − 96µ√
96σ

.

The thick line gives the limiting standard normal distribution of log returns on longer
time horizons, ∑n

i=1 ln Ri − nµ√
nσ

−→ N(0, 1), (6.62)

as n goes to infinity. This result is known as the central limit theorem, and it is valid
for any distribution of ln Ri with finite variance.
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In conclusion, IID returns on short time horizons imply that log returns on long
time horizons are distributed normally. When log returns are distributed normally
we say that returns have lognormal distribution.

The central limit theorem applies in situations when the smallest trading interval
is fixed and the number of trading intervals goes to infinity. If we were to fix the
time horizon T and let the trading interval go to zero, �t → 0, so that the number of
trading intervals n = T/�t again goes to infinity, the limit need not be normal, but
in general it will be a so-called infinitely divisible distribution. One can show that
every infinitely divisible distribution is a sum of a normal variable with independent
Poisson variables of different jump sizes and arrival intensities. If the limit of IID
log returns is normal, we say that log returns follow a Brownian motion process
in the limit. If the limiting distribution also contains jumps, we say that the log
return follows a Lévy process, of which the Poisson jump process is the simplest
example.,

Facts. There are two important limit laws in finance. For every fixed �t let
{ln Ri(�t)}i=1,2,... be a collection of independent random variables with mean
µ�t and variance σ 2�t .

• Central limit theorem (fixed trading interval, number of trades going to
infinity):

lim
T→∞,
�t fixed,
n=T/�t

∑n
i=1 ln Ri(�t) − nµ�t√

nσ
√
�t

= lim
T→∞,
�t fixed,
n=T/�t

∑n
i=1 ln Ri(�t) − µT

σ
√
T

= N(0, 1).

• Continuous trading limit:

lim
T fixed,
�t→0,
n=T/�t

∑n
i=1 ln Ri(�t) − nµ�t√

nσ
√
�t

= lim
T fixed,
�t→0,
n=T/�t

∑n
i=1 ln Ri(�t) − µT

σ
√
T

= infinitely divisible distribution(0, 1).

Every infinitely divisible distribution is a sum of mutually independent
normal and (possibly infinitely many) Poisson variables with different jump
sizes and arrival intensities.

6.5 Summary

• This chapter examined two continuous-time limits of the binomial stock price
lattice: the Brownian motion limit and the Poisson jump limit.
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Figure 6.10. The scaled distribution of 5 min, 20 min, hourly and daily returns (dot, dash,
dot-dash and thin line, respectively). Thick line corresponds to the standard normal distribu-
tion.

• In both cases we have assumed that log returns are IID and we have required
the mean and variance of the log return on a fixed time horizon (say one
month) to be the same regardless of the length of the rehedging interval.

• In a model with IID log returns both the mean and the variance of log returns
increase linearly with the time horizon.

• The easiest way to implement the Brownian motion limit is to keep the con-
ditional objective probabilities constant and simply scale down the values of
log returns to satisfy the linear law for mean and variance. With the notation
µ = E[ln R1], σ 2 = Var(ln R1), the Brownian scaling reads

ln R�t = µ�t + (ln R1 − µ)
√
�t.

• A simple application of the central limit theorem shows that as �t → 0
the distribution of log returns on a fixed time horizon becomes normal (see
Exercise 6.8):

ln RT ∼ N(µT, σ 2T ).

• In the Brownian motion limit the change of measure does not affect the vari-
ance of log returns, only the mean, and the shape of the distribution remains
normal (the last assertion is taken for granted, the proof is in Section 7.5.2).
Denoting the risk-free yield by r = ln Rf 1 we have

ln RT
Q∼ N((r − 1

2σ
2)T , σ 2T ). (6.63)

This is one of the most remarkable results in finance—the risk-neutral distri-
bution of log returns is completely independent of µ.
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• With (6.63) in hand it is relatively straightforward to price the European call
option by evaluating the risk-neutral expectation,

C0 = EQ

[
CT

erT

]
= e−rT EQ[max(S0eln RT︸ ︷︷ ︸

ST

−K, 0)].

The result is the famous Black–Scholes formula (6.35).
• In the Brownian motion limit the distance between high and low log return

ln Ru(�t) − ln Rd(�t) goes to 0 as �t → 0. This means that stock prices
move continuously in the limit.

• The Poisson limit works by keeping ln Ru(�t)− ln Rd(�t) = J constant and
instead changing the probabilities, pu = 1 −λ�t and pd = λ�t . In the limit
the log price grows at a constant rate most of the time, but once in a while it
jumps by the amount J ; we say that the jumps arrive with intensity λ.

• Under the risk-neutral measure the rate of growth and the size of jumps re-
mains the same, only the arrival intensity of jumps changes.

• In the Poisson jump limit the call option price

C0 = EQ

[
CT

erT

]
= e−rT EQ[max(S0eln RT︸ ︷︷ ︸

ST

−K, 0)]

can be expressed as a sum (of possibly infinitely many terms if jumps are
upwards rather than downwards).

6.6 Notes

The square root law for the standard deviation of returns was observed as early as
1863 (see Taqqu 2002). The derivation of the Black–Scholes formula via a binomial
lattice is due to Cox et al. (1979). The Poisson limit of the binomial lattice appears in
Page Jr and Sanders (1986). See notes in Chapter 7 for references to Lévy processes
representing IID log returns in continuous time. For optimal hedging under Lévy
processes see notes in Chapter 13.

6.7 Exercises

Exercise 6.1 (risk-neutral probabilities in Brownian motion limit). Show that

qu(�t) := Rf(�t) − Rd(�t)

Ru(�t) − Rd(�t)
, (6.64)

with Rf(�t), Rf(�t) given by (6.25), (6.26) can be approximated as

qu(�t) = pu + ξ
√
�t + o(

√
�t),

with

ξ = r − µ − σ 2/2

ln Ru(1) − ln Rd(1)
and r, µ, σ defined in (6.22)–(6.24).
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Exercise 6.2 (variance of monthly log return). Consider a random variable Z

taking two values Zu and Zd with probability pu and pd respectively. Show that

Var(Z) = pupd(Zu − Zd)
2.

Exercise 6.3 (risk-neutral mean and variance of log returns on short horizons).
Suppose risk-neutral probabilities satisfy

qu(t) = pu + ξ
√
t + o(

√
t),

qd(t) = pd + ξ
√
t + o(

√
t),

and that log returns are given by

ln Rt = µt + √
t(ln R1 − µ).

Find the risk-neutral mean and variance of ln Rt with precision o(t).

Exercise 6.4 (mean and variance of log return in a jump model). In a model
with pu = 1 − λ�t , Xu = µ̃�t , Xd = µ̃�t − J show that

E[X] = (µ̃ − λJ )�t,

Var(X) = J 2λ�t − (Jλ�t)2.

Exercise 6.5 (probability of no jumps). In a binomial model with pu = 1 − λ�t

the probability of no jumps over period [0, t] is

p0(�t) = (1 − λ�t)t/�t .

Find the limit p0 = lim�t→0 p0(�t).

Exercise 6.6 (risk-neutral distribution of jumps). Consider a binomial model
with

ln Ru(�t) = µ̃(�t)�t,

ln Rd(�t) = µ̃(�t)�t − J (�t),

ln Rf(�t) = r�t,

where µ̃(�t) and J (�t) are given by the calibration (6.41) and (6.42). Show that
the one-period risk-neutral probability in this model satisfies

qu(�t) = 1 + r − µ̃

1 − e−J
�t + o(�t),

where µ̃ and J are given by (6.43) and (6.44).

Exercise 6.7 (option pricing in the Poisson jump model). Compute the no-
arbitrage call option price in the model of Section 6.3 with λ = 9. This model
will have nine jumps per month on average with a standard deviation of three jumps
per month. This is roughly one jump every other trading day.

Exercise 6.8 (central limit theorem). Use the central limit theorem to find the
P -distribution of ln(St/S0) in the Brownian motion limit of the binomial lattice.



7
Fast Fourier Transform

This chapter explains how one can accelerate the computations in the binomial lattice
of Chapter 6 and get closer to the continuous-time limit numerically using a fast
Fourier transform (FFT). As a by-product we will see that Fourier transform can be
used to characterize the continuous-time limit theoretically and this will allow us to
prove what we have assumed in Chapter 6, namely that the risk-neutral distribution
of log returns is normal in the Brownian motion limit. We will appreciate the
speed of the FFT in Chapter 13 when dealing with the continuous-time limit of an
incomplete market model.

7.1 Introduction to Complex Numbers and the Fourier Transform

The Fourier transform is very much about evenly spaced points on a circle, and
if you have seen a bicycle wheel, you are perfectly qualified to study this topic.
From a mathematical point of view, evenly distributed points on a circle are most
easily described by complex numbers. This section reviews the geometry of these
numbers, which in turn determine the properties of the Fourier transform.

7.1.1 Complex Numbers

Complex numbers are a convenient way of capturing vectors in a two-dimensional
space. For example, Figure 7.1 depicts a vector,

2 + i.

This is a point in the plane two units along the real (horizontal) axis and one unit
along the imaginary (vertical) axis. This terminology is unfortunate; the imaginary
axis is no less real than the real axis. It would be fairer to call the imaginary axis
the north–south axis and the real axis the east–west axis.

The rules for addition of complex numbers are the same as with vectors, for
example, [

2
1

]
+
[

3
−4

]
=
[

5
−3

]
translated into complex notation would read

(2 + i) + (3 − 4i) = 5 − 3i.
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2i

2 + i

2

1i

10

Figure 7.1. A complex number as a two-dimensional vector.

−i

−1

A

i

10

ϕ

cos ϕ   + i sin ϕ

i

10

ϕ
i sin ϕ

(a) (b)

cos ϕ

Figure 7.2. A point on the unit circle expressed as a complex number.

Likewise, multiplication by a scalar (a real number) works as for vectors:

−3

[
2
1

]
=
[−6
−3

]
translates into complex numbers as

−3(2 + i) = −6 − 3i.

7.1.2 Complex Multiplication

Complex numbers are very good at describing the movement around a unit circle.
As shown in Figure 7.2a, the unit circle intersects the real axis at points −1, 1, and
the imaginary axis at points −i and i.

A point A on the unit circle is uniquely characterized by its argument ϕ, the angle
between the real axis and the line OA. More specifically, Figure 7.2b shows that the
point A can be expressed as cosϕ + i sin ϕ.

On most computers the functions sin and cos are implemented in such a way that
the angle ϕ must be given in radians. Radians measure the distance travelled on the
perimeter of the unit circle. The entire perimeter of the unit circle has length 2π ,
which corresponds to 360◦. The angle corresponding to i is 90◦ or π/2, the angle
corresponding to −1 is 180◦ or π , and so on, as shown in Table 7.1.
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Table 7.1. Conversion table between degrees and radians.

Angle in degrees 0 30 60 90 180 270 360
Angle in radians 0 π/6 π/3 π/2 π 3π/2 2π

Facts.

• Multiplying complex numbers on a unit circle means adding angles. The
angle of i is 90◦, the angle of i × i will be 90◦ + 90◦ = 180◦, which
corresponds to −1 (see Figure 7.3a). In standard notation this gives the
famous formula,

i × i = i2 = −1. (7.1)

With (7.1) in hand the general definition of complex multiplication follows
naturally:

(a1 + ib1) × (a2 + ib2) = a1a2 + i(b1a2 + a1b2) + b1b2i2

= a1a2 − b1b2 + i(b1a2 + a1b2). (7.2)

• It also follows that the ‘multiplication is adding angles’ rule works quite
generally on the unit circle:

(cosϕ1 + i sin ϕ1) × (cosϕ2 + i sin ϕ2)

= cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2). (7.3)

• One can express points on the unit circle more elegantly using the Euler
formula,

cosϕ + i sin ϕ = eiϕ, (7.4)

whereby (7.3) becomes

eiϕ1 × eiϕ2 = ei(ϕ1+ϕ2) (7.5)

(see Figure 7.3b).

7.1.3 Geometry of Spoked Wheels

It is very easy to construct a wheel with evenly placed spokes using complex num-
bers. Suppose we want to place five points on the unit circle, evenly spaced. One
fifth of the full circle is characterized by the angle 2π/5, hence the first spoke will
be placed at ei2π/5. Let us denote this number by z5:

z5 := ei2π/5.

Since the multiplication by z5 causes anticlockwise rotation by one-fifth of the full
circle, the second spoke will be (z5)

2, the third spoke at (z5)
3, and so on (see

Figure 7.4a).
This provides a natural numbering of the spokes, according to how many elemen-

tary rotations are needed to reach the particular spoke (see Figure 7.4b). Note that
since we are moving in a circle we will come back to the starting point after five
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Figure 7.3. Complex multiplication on a unit circle means adding angles.
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1 = (z5)0 = (z5)5
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−50 5

Figure 7.4. Spoke numbering.

rotations anticlockwise,

(z5)
0 = (z5)

5 = (z5)
10 = (z5)

15 = · · · ,
(z5)

1 = (z5)
6 = (z5)

11 = (z5)
16 = · · · ,

...

(z5)
4 = (z5)

9 = (z5)
14 = (z5)

19 = · · · ,
and also after five rotations clockwise,

(z5)
0 = (z5)

−5 = (z5)
−10 = (z5)

−15 = · · · ,
(z5)

1 = (z5)
−4 = (z5)

−9 = (z5)
−14 = · · · ,

...

(z5)
4 = (z5)

−1 = (z5)
−6 = (z5)

−11 = · · · .
Thus the numbering of spokes is not unique; for example, the indices 0,±5,±10
refer to the same spoke (see Figure 7.4b).

The following box summarizes the most important properties of evenly spaced
points on the unit circle. These properties are essential for the understanding of how
and why the discrete Fourier transform works.
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rev(a)

a
a2

a1

a0

an − 1

an − 2

Figure 7.5. Reverse order on a circle.

• Let zn be a rotation by one-nth of a full circle:

zn := ei2π/n.

Then
(zn)

0 + (zn)
1 + · · · + (zn)

n−1 = 0 (7.6)

for any n. This is because the points (zn)
0, (zn)

1, . . . , (zn)
n−1 are evenly

distributed on a unit circle and thus the result of summation must not change
if we rotate the set of points by one-nth of a full circle. The only vector
that remains unchanged after such a rotation is the zero vector.

• One can generalize this result further. Let k be an integer between 1 and
n − 1. Then

(zkn)
0 + (zkn)

1 + · · · + (zkn)
n−1 = 0 (7.7)

for any n. The reason for this result is again the rotational symmetry of
points (zkn)

0, (zkn)
1, . . . , (zkn)

n−1. The difference from the above case is that
in the sequence (zn)

0, (zn)
1, . . . , (zn)

n−1 each spoke occurs exactly once,
whereas in (zkn)

0, (zkn)
1, . . . , (zkn)

n−1 the same spoke can occur several
times (try n = 4, k = 2).

• The case with k = 0 requires special attention. Since (z0
n)

j = 1 for all j
we have

(zkn)
0 + (zkn)

1 + · · · + (zkn)
n−1 = n.

To summarize,

(zkn)
0 + (zkn)

1 + · · · + (zkn)
n−1 = n for k = 0,±n,±2n, . . . , (7.8)

(zkn)
0 + (zkn)

1 + · · · + (zkn)
n−1 = 0 for k �= 0,±n,±2n, . . . . (7.9)

7.1.4 Reverse Order on a Circle

Given a sequence of n numbers a = [a0, a1, . . . , an−1] we can say that

rev(a) := [a0, an−1, . . . , a1]
is a in reverse order. If a is written around a circle in an anticlockwise direction,
then rev(a) is found by reading from a0 in a clockwise direction (see Figure 7.5).
Note that rev(a) is not equal to [an−1, . . . , a1, a0].
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• For any k the sequence

(zkn)
0, (zkn)

1, . . . , (zkn)
n−1

is the same as the sequence

(z−k
n )0, (z−k

n )1, . . . , (z−k
n )n−1

taken in the reverse order:

rev((z−k
n )0, (z−k

n )1, . . . , (z−k
n )n−1) = (zkn)

0, (zkn)
1, . . . , (zkn)

n−1. (7.10)

This is because (z−k
n )n−j = z

−kn+kj
n = z

kj
n = (zkn)

j for any j .

7.2 Discrete Fourier Transform (DFT)

As in the previous section take zn := ei2π/n (this number is called the nth root
of unity). Let a0, a1, . . . , an−1 be a sequence of n (in general complex) numbers.
The discrete Fourier transform of a0, a1, . . . , an−1 is the sequence b0, b1, . . . , bn−1
such that

bk = a0(z
k
n)

0 + a1(z
k
n)

1 + · · · + an−1(z
k
n)

n−1

√
n

(7.11)

= 1√
n

n−1∑
j=0

aj z
jk
n = 1√

n

n−1∑
j=0

aj ei(2π/n)jk.

We write
F (a) = b.

Equation (7.11) represents the forward transform. The inverse transform is

ãl = b̃0(z
−l
n )0 + b̃1(z

−l
n )1 + · · · + b̃n−1(z

−l
n )n−1

√
n

(7.12)

= 1√
n

n−1∑
k=0

b̃kz
−kl
n = 1√

n

n−1∑
k=0

b̃ke−i(2π/n)kl

and we write
ã = F −1(b̃).

• The inverse discrete Fourier transform of the sequence b̃0, b̃1, . . . , b̃n−1 is
the same as the forward transform of the same sequence in reversed order:

F −1(b̃) = F (rev(b̃)). (7.13)

This is a direct consequence of (7.10).
• Appendix 7.7.1 shows that F −1 is indeed an inverse transformation to F ,

that is,
F −1(F (a)) = F (F −1(a)) = a. (7.14)

This result relies on (7.8) and (7.9).
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Figure 7.6. Computing the first element of the circular convolution a � b.

7.3 Fourier Transforms in Finance

7.3.1 Option Pricing via Circular Convolution

For any two n-dimensional vectors a = [a0, a1, . . . , an−1], b = [b0, b1, . . . , bn−1]
we define the circular convolution of a and b to be a new vector c

c = a � b

such that

cj =
n−1∑
k=0

aj−kbk. (7.15)

One will immediately note that the index j − k can be less than 0. If this occurs, we
will simply add n to get the result between 0 and n − 1; this practice is consistent
with the spoke numbering introduced in Section 7.1.3.

Graphically, one can evaluate the convolution as follows.

1. Set up two concentric circles divided into n equal segments. Write a around
the inner circle clockwise and b around the outer circle anticlockwise. Fig-
ure 7.6 shows this for n = 4.

2. Perform a scalar multiplication between the two circles. In Figure 7.6 this
would give

a0b0 + a3b1 + a2b2 + a1b3.

The result is c0.

3. Turn the inner circle anticlockwise by (1/n)th of a full circle. Repeat the
scalar multiplication between the circles. The result is c1. In Figure 7.7,

c1 = a1b0 + a0b1 + a3b2 + a2b3.

4. Repeat this procedure to compute c2, . . . , cn−1, each time giving the inner
circle a (1/n)th turn anticlockwise.
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b2 b0a1a3
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Figure 7.7. Computing the second element of the circular convolution a � b.

How can one use convolution for option pricing? Let us go back to the binomial
option pricing model of Chapter 5. At time T = 3 the option can have four different
values:

C(3) =

⎡
⎢⎢⎣

599.64
102.00
0.00
0.00

⎤
⎥⎥⎦ .

The conditional one-period risk-neutral probabilities are qu = 0.435 23, qd =
0.564 77 and the risk-free return is Rf = 1.0033. Let us construct two vectors
a and b. Vector a will be C(3) in reverse order:

a = rev(C(3)) =

⎡
⎢⎢⎣

599.64
0.00
0.00

102.00

⎤
⎥⎥⎦ .

Vector b will contain state prices which we know are equal to the risk-neutral prob-
abilities discounted by the risk-free rate. This quantity is sometimes called the
pricing kernel or the stochastic discount factor. Since we only have two states over
one period there are just two state prices; the remaining entries will be padded by
zeros:

b =

⎡
⎢⎢⎢⎢⎢⎢⎣

qu

Rf
qd

Rf

0.00
0.00

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0.4338
0.5629
0.00
0.00

⎤
⎥⎥⎦ .

Now let us compute c = a � b using the graphical method described above (see
Figure 7.8).
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(a) (b)

(c) (d)
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0.5629

0.5629
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0

0

0

0
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0.5629

0.5629

599.64

0

0

0

0

599.64 0.4338 0.4338102.0000 0 0

102.00 0.43380.4338599.64 00 00

Figure 7.8. Option pricing via circular convolution. (a) c0 = 599.64 × 0.4338 +
102.00 × 0.5629; (b) c1 = 599.64 × 0.5629; (c) c2 = 0; (d) c3 = 102.00 × 0.4338.

Numerically,

c0 = 317.54, c1 = 337.54, c2 = 0, c3 = 44.25.

We will write the result c in reverse order

rev(c) =

⎡
⎢⎢⎣

317.54
44.25

0
337.54

⎤
⎥⎥⎦

and compare it with the no-arbitrage price of the option at t = 2:

C(2) =
⎡
⎣317.54

44.25
0

⎤
⎦ .

We can see that rev(c) corresponds to C(2) except that the last entry in rev(c) is
meaningless; it is the no-arbitrage price of the payoff[

0
599.64

]
.

We have just shown that

rev(C(2)) = rev(C(3)) � b.
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Similarly,

rev(C(1)) = rev(C(2)) � b,

rev(C(0)) = rev(C(1)) � b.

By backward substitution,

rev(C(2)) = rev(C(3)) � b,

rev(C(1)) = rev(C(3)) � b � b,

rev(C(0)) = rev(C(3)) � b � b � b,

where b is the vector containing the pricing kernel q/(1 + r) padded by zeros to
have the same dimension as C(3). The vectors C(0), C(1), C(2) computed in
this manner have more entries than needed; the useful entries are at the top end
of each vector. Numerically, we have

Number of
low returns C(0) C(1) C(2) C(3)

0 81.36 162.66 317.54 599.64
1 115.28 19.19 44.25 102.00
2 265.47 190.01 0.00 0.00
3 232.62 325.17 337.54 0.00

The relevant entries are highlighted. Compare this result with Figure 5.10 in
Chapter 5.

7.3.2 Option Pricing via Discrete Fourier Transform

The discrete Fourier transform has one very useful property: it turns convolutions
into products,

F (a � b) = √
nF (a)F (b) (7.16)

(see Appendix 7.7.2). This can be used to a great advantage in pricing. Recall from
the preceding section that

rev(C0) = rev(CT ) �
T times︷ ︸︸ ︷

b � b � · · · � b.

Now apply the forward transform F to both sides, using property (7.16) on the
right-hand side:

F (rev(C0)) = F (rev(CT )) × (
√
nF (b))T . (7.17)

Recall from (7.13) that F (rev(C0)) = F −1(C0) and substitute this into (7.17)

F −1(C0) = F −1(CT ) × (
√
nF (b))T .

Finally, apply the forward transform to both sides again and use (7.14) on the left-
hand side:

C0 = F (F −1(CT ) × (
√
nF (b))T ).
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Table 7.2. Comparison of DFT pricing algorithm with standard binomial recursion.
Execution times for Pentium III 750 MHz, 128 Mb RAM.

Execution time
in seconds

Trading interval Number of ︷ ︸︸ ︷
in minutes periods DFT recursion

60 504 0.15 0.4
30 1008 0.6 1.6
15 2016 2.3 6.4

5 6048 20.8 61.6

Option pricing via discrete Fourier transform. Consider a model with IID
stock returns and a constant interest rate, represented by a recombining binomial
tree with T periods and T + 1 trading dates. Let the (T + 1)-dimensional vector
CT be the payoff of the option at expiry. Let b contain the one-step state prices
as the first two entries, with the remaining T − 1 entries being zeros. Then the
first element of the (T + 1)-dimensional vector C0,

C0 = F (F −1(CT ) × (
√
T + 1F (b))T ), (7.18)

is the no-arbitrage price of the option at time 0. The roles of the forward and
inverse transforms are symmetrical, that is we also have

C0 = F −1(F (CT )(
√
T + 1F −1(b))T ). (7.19)

Every textbook, and indeed every computer language, defines the forward and
inverse transforms slightly differently. In MATLAB the two transforms are imple-
mented under the names dft and idft,1 respectively, and they are related to F
and F −1 as follows:

dft(a) = √
nF −1(a),

idft(a) = F (a)/
√
n,

with n being the dimension of vector a. Equation (7.19) rephrased in terms of
MATLAB functions dft and idft becomes

C0 = dft(idft(CT ) × ((dft(b))T ).

Suppose the vectors C T and b have already been defined in MATLAB. To com-
pute the option price at t = 0 we would write

C 0 = dft( idft(C T). ∗ (dft(b).ˆT) );
sprintf(’no-arbitrage price at t=0 is %0.2f’,C 0(1));

The program chapter7sect3.m illustrates this point in full. It is instructive to
compare the speed of the DFT algorithm with the speed of the standard recursive
pricing procedure chapter6sect2b. The DFT algorithm is approximately three times

1Required M-files are available from the book’s website.
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faster; the computational time for both algorithms grows quadratically with the
number of periods (see Table 7.2).

7.4 Fast Pricing via the Fast Fourier Transform (FFT)

There is a fast version of the discrete Fourier transform that considerably saves on
computational time. It comes almost for free—only one adjustment is needed: the
length of the input vector must be of the form 2p3q5r . The next two subsections
describe the FFT algorithm in more detail; those interested in applications can jump
straight to Section 7.4.4.

7.4.1 Description of Basic FFT Algorithm

The number of complex multiplications required to compute the discrete Fourier
transform from its definition (7.11) is proportional to n2. The fast Fourier transform
is an algorithm that will compute the same transform with only n log2 n complex
multiplications. With n = 1024 this represents only 10 240 as opposed to n2 =
1 048 576 operations—a 100-fold improvement in speed.

Here is the basic idea of FFT.
1. Take n to be a power of 2:

n := 2p.

If the original dimension is not a power of 2, add zeros at the end of the
original vector.

2. Calculate the Fourier transform, summing over the even and odd spokes sep-
arately:

bk = 1√
n

n−1∑
j=0

aj (z
k
n)

j

= 1√
n

(n/2)−1∑
j=0

a2j (z
k
n)

2j

︸ ︷︷ ︸
even indices

+ 1√
n

(n/2)−1∑
j=0

a2j+1(z
k
n)

2j+1

︸ ︷︷ ︸
odd indices

= 1√
n

(n/2)−1∑
j=0

a2j ((z
2
n)

k)j + 1√
n
zkn

(n/2)−1∑
j=0

a2j+1((z
2
n)

k)j .

The two sums represent transforms of length n/2, the number zkn in front of
the second sum is known as the twiddle factor. Crucially, we can reuse the
same half transforms to compute bk+n/2 (recall that znn = 1 is a rotation by a
full circle, while z

n/2
n = −1 is a rotation by half a circle):

bk+n/2 = 1√
n
znn

(n/2)−1∑
j=0

a2j ((z
2
n)

k)j + 1√
n
z
k+n/2
n

(n/2)−1∑
j=0

a2j+1((z
2
n)

k)j

= 1√
n

(n/2)−1∑
j=0

a2j ((z
2
n)

k)j − 1√
n
zkn

(n/2)−1∑
j=0

a2j+1((z
2
n)

k)j .
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3. To summarize, the sums

(n/2)−1∑
j=0

a2j ((z
2
n)

k)j and
(n/2)−1∑
j=0

a2j+1((z
2
n)

k)j

only need to be computed for k = 0, 1, . . . , (n/2)−1, their value for k = n/2
is the same as with k = 0, the value for (n/2) + 1 is the same as with k = 1,
etc. These two sums for different k represent two Fourier transforms of
length n/2. To obtain bk for k = 0, 1, . . . , n − 1 the only extra computation
required is n complex multiplications by the ‘twiddle factors’zkn. To compute
one transform of length n we need 2 transforms of length n/2 plus n complex
multiplications, which we can think of as n/2 transforms of length 2. This
is called the divide-and-conquer approach and it can be generalized to any
composite length n = n1n2, which can be broken down to n1 transforms of
length n2 and n2 transforms of length n1.

4. The process of splitting indices into even and odd is called decimation in time.
A similar algorithm that divides indices into the top and bottom half (on the
unit circle) is known as decimation in frequency. The difference between
these two approaches lies in the ordering of input and output; the former has
naturally ordered input, whereas the latter yields naturally ordered output.

Let Op(n) denote the number of complex multiplications required for a transform
of size n. For simplicity let us agree that Op(1) = 1. We would like to evaluate
Op(n). Above we have shown that

Op(n) = 2 Op(n/2) + n.

Apply the same reduction to the transform of size n/2,

Op(n/2) = 2 Op(n/4) + n/2,

then to the transform of size n/4,

Op(n/4) = 2 Op(n/8) + n/4,

and so on,

Op(n) = 2 Op(n/2) + n = 2(2 Op(n/4) + n/2) + n = 4 Op(n/4) + n + n

= · · · after p steps= 2p Op(n/2p) + n + · · · + n︸ ︷︷ ︸
p times

.

Recall that n = 2p and Op(1) = 1, hence

Op(n) = pn + n = n log2 n + n.

7.4.2 FFT of Lengths Different from 2p

The FFT algorithm for n = 2p is referred to as a radix-2 algorithm. When n �= 2p

one has to use more complex algorithms.
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(1) For low prime numbers n = 2, 3, 5, 7 use the definition of the discrete Fourier
transform.

(2) If n > 7 is a prime number (it has no divisors other than 1 and n), use the
so-called Rader algorithm that reduces to a Fourier transform of size n − 1,
using convolution. Note that n − 1 will not be a prime.

(3) If n is not a prime n = n1n2, and n1, n2 have no common divisors, then use
the prime factor algorithm. Like the standard divide-and-conquer approach
it requires n1 transforms of length n2 and n2 transforms of size n1 but it saves
on twiddle factor multiplications by cleverly reordering the indices.

(4) Finally, if n = n
p
1 with n1 prime use the radix-n1 algorithm, analogous to the

radix-2 algorithm. There is one exception: transforms of length 2p should
use the radix-4 algorithm as much as possible.

Generally, the higher the n the slower the radix-n algorithm per output length.
There is one notable exception: radix-4 is faster than radix-2 by about 25%. In
practice, one uses transforms of size n = 2p3q5r , which are evaluated by sequential
applications of rules (1), (3), (4), and if the original vector size is not of this form,
then a sufficient number of zeros is added. The advantage of using mixed-radix
algorithms is twofold: firstly, more transform lengths are available, which means one
need not pad the input with too many zeros; and, secondly, one can use the operation-
saving prime factor algorithm. For example, with vector size 210 + 1 = 1025 the
next available size for the radix-2 algorithm is n = 2048 = 211, but with a mixed
2,3,5-radix algorithm one could use the length n = 1080 = 23335, which is nearly
twice as small and consequently the Fourier transform evaluation is twice as fast
when compared with the radix-2 algorithm.

7.4.3 Computational Considerations

One can refine the basic FFT algorithms in many ways. For example, not all twiddle
factors zkn are complex and one can therefore reduce the number of complex opera-
tions in short length transforms. One can save complex multiplications by shifting
data in the memory; for small n this will help a little. However, for large n shift-
ing numbers in the memory can be as time-consuming as complex multiplication,
partly because the processor speed is generally higher than the memory speed. A
good algorithm will strike a balance between the two operations. It is also possible,
instead of moving numbers in the memory, to change the way numbers are indexed
in the memory. One example of this procedure is ‘bit reversal’, which swaps odd
and even indices in a vector.

Because of different processor speeds and memory access, FFT algorithms will
score differently in speed ranking on different computers. For small n (100–1000)
the gain in speed by choosing different algorithms can be as much as 400%, for large
n (1 000 000) it is around 25%. See the notes at the end of chapter for specialized
references. In practice, if the 2,3,5-radix FFT algorithm is not fast enough for your
application, then it is probably more productive to rethink the application rather than
try to optimize the FFT code further.
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7.4.4 MATLAB Implementation of FFT

This section deals with the implementation of the pricing formula (7.18) on a com-
puter using fast DFT routines, known as FFTs.

Two main issues arise in the use of FFT routines: (1) finding out the mathematical
definition of a specific FFT routine, and (2) choosing the right input length to make
the computation fast.

(1) The first task of any user is to find out how a given computer routine, call
it fft, is related to the theoretical transforms F and F −1 defined in (7.11)
and (7.12). To do so, one proceeds in two simple steps:

(a) In the first step one determines the normalization factor. Define a =
[1 0 0 0] and compute ã = fft(a). If ã0 = 0.25 then

either fft = F /
√
n or fft = F −1/

√
n;

otherwise ã0 = 0.5 then

either fft = F or fft = F −1;
and if ã0 = 1 then

either fft = √
nF or fft = √

nF −1.

(b) To ascertain whether one is dealing with a forward or an inverse trans-
form, one defines b = [0 1 0 0] and evaluates b̃ = fft(b). If the
imaginary part of b̃1 is positive, thenfft is proportional to F , otherwise
it is proportional to F −1.

(2) As we have shown above, the fast Fourier transform (FFT) of length n = rm

will only require K(r)mrm operations, but one still has to choose r (and
therefore n) carefully because the constant K(r) can be very large for some
choices of radix r . Since MATLAB will compute an FFT of any length it is
particularly important for the user to choose n sensibly, otherwise the FFT
algorithm may turn out to be very slow indeed.

The forward and inverse FFT in MATLAB are calledfft andifft, respectively:

fft(a) = √
nF −1(a), (7.20)

ifft(a) = F (a)√
n

, (7.21)

where n is the dimension of vector a. The option pricing equation (7.19) therefore
becomes

C0 = fft(ifft(CT ) × ((fft(b))T ),

which in terms of MATLAB code reads

C 0 = fft( ifft(C T). ∗ (fft(b).ˆT) );
This formula is not yet suitable for applications becauseC Tmay not have a desirable
length. There are many instances when an FFT of length n1 is faster than an FFT of
length n2 even though n1 > n2. This somewhat counterintuitive phenomenon was
discussed in Section 7.4.2 and is illustrated in Table 7.3.
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Table 7.3. Execution time (on a Pentium III 750 MHz, 128 Mb RAM,
MATLAB) of FFT algorithm for different input lengths n.

Execution time
n Factorization (seconds)

499 979 499 979 27.2
1 048 575 3 × 52 × 11 × 31 × 41 5.2
1 048 576 220 0.93
1 080 000 263354 0.11

Table 7.4. Comparison of DFT and FFT pricing speeds.
Execution times for Pentium III 750 MHz, 128 Mb RAM.

Execution time
in seconds

Trading interval Number of ︷ ︸︸ ︷
in minutes periods DFT FFT

30 1 008 0.6 0.003
15 2 016 2.3 0.006

5 6 048 20.8 0.022
1 30 240 510 0.27

If n is the length of the original input, the nearest larger length with desirable
properties can be obtained by invoking function nextn(n), which is downloadable
from the textbook’s website. MATLAB allows the user to specify the transform
length by including it as a second optional argument of fft and ifft. Hence a
fast implementation of (7.19) in MATLAB would read:

new n = nextn(length(C T));

C 0 = fft(ifft(C T,new n).*(fft(b,new n).ˆT));

The padding of the original inputs C T, b by zeros to the dimension new n is done
automatically.

The program chapter7sect4.m gives a working example of pricing with the fast
Fourier transform. The FFT algorithm has a blistering speed compared with the DFT
(see Table 7.4). Because it is so fast one can explore higher trading frequencies and
see that the Black–Scholes formula really does describe the limiting value. Note that
the Black–Scholes formula is still about 10 000 times faster than the FFT algorithm
(see Table 7.5).

7.5 Further Applications of FFTs in Finance

7.5.1 Characteristic Functions, the Lévy Theorem and Convergence in
Distribution

What the FFT is to practical applications, the continuous Fourier transform is to
theoretical work. Let X be a random variable with probability density fX(x). The
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Table 7.5. Option value in a binomial model as a function of rebalancing frequency �t .
Output from program chapter7sect4. Note that �t = 0 corresponds to the theoretical price
in the Black–Scholes model.

�t (seconds) 60 10 1 0

Option price 75.933 98 75.932 94 75.932 89 75.932 88
Option delta 0.316 685 34 0.316 683 46 0.316 683 33 0.316 683 31

continuous Fourier transform of f is defined as

φX(λ) = E[eiλX] for λ ∈ R. (7.22)

Thus, when X is a discrete variable with n equally spaced values x0, x1, . . . , xn−1,
then

E[eiλX] =
n−1∑
k=0

f (xk)e
iλxk

very much resembles the discrete Fourier transform of the vector of probabilities
f (xk).

In probability theory φX is known as the characteristic function of the random
variable X. Let Y be a sum of IID random variables Xk ,

Y = X1 + X2 + · · · + Xn,

then for the characteristic function of Y we have

φY (λ) = E[eiλY ] = E[eiλ(X1+X2+···+Xn)]
= E[eiλX1 eiλX2 · · · eiλXn ].

IfXk are independent, then eiλXk are also independent; we know that for independent
variables the expectation of a product is a product of expectations:

φY (λ) = E[eiλX1 ]E[eiλX2 ] · · · E[eiλXn ] (7.23)

= (E[eiλX])n = (φX(λ))n.

In probability theory the density of a sum of IID random variables equals the convo-
lution of individual densities. Hence equation (7.23) is analogous to the convolution
theorem (7.16).

In the option pricing model Y represents the logarithm of the stock return to
maturity and X = X�t is the logarithm of the one-period return, where one period
has length �t . Expectations are taken under the risk-neutral measure Q�t ; this
measure is different for different values of time step,

φ�t,ln RT
(λ) = EQ�t [eiλ ln RT ]

= (EQ�t [eiλ ln R�t ])T /�t = (φ�t,ln R�t (λ))
T /�t . (7.24)

The fact that the risk-neutral distribution of log returns in Figure 6.6 has a limit
as �t → 0 is now mathematically captured by saying that φ�t,ln RT

(λ) converges
pointwise (for each λ separately) to a fixed characteristic function φln RT

(λ) as



164 7. Fast Fourier Transform

�t → 0. Lévy’s continuity theorem states that pointwise convergence of charac-
teristic functions implies that for any bounded continuous function g(ln RT ) we
have

EQ�t [g(ln RT )] → EQ[g(ln RT )], (7.25)

where Q is the probability measure corresponding to φln RT
(λ). The relationship

(7.25) is known as the convergence in distribution (more technically, the weak
convergence in measure).

7.5.2 The Distribution of Log Returns in the Brownian Limit

Explicitly, in the binomial model the characteristic function of log returns reads

φ�t,ln R�t (λ) = EQ�t [eiλ ln R�t ] = qu(�t)eiλ ln Ru(�t) + qd(�t)eiλ ln Rd(�t).

Since ln R(�t) is small we can approximate the exponentials by a second-order
Taylor expansion,

EQ�t [eiλ ln R�t ] = EQ�t [1 + iλ ln R�t − λ2 1
2 (ln R�t)

2 + o(�t)].
The hard-earned results of Section 6.2.4 tell us that

EQ�t [ln R�t ] = (r − 1
2σ

2)�t + o(�t),

EQ�t [(ln R�t)
2] = σ 2�t + o(�t),

and consequently

φ�t,ln R�t (λ) = 1 + (iλ(r − 1
2σ

2) − λ2 1
2σ

2)�t + o(�t). (7.26)

Plug (7.26) into (7.24) to obtain

φ�t,ln RT
(λ) = (1 + (iλ(r − 1

2σ
2) − λ2 1

2σ
2)�t + o(�t))T /�t .

Exercise 6.5 has shown that for x real lim�t→0(1 + x�t + o(�t))T /�t = exT ; the
same result works for x complex so that in the limit,

lim
�t→0

φ�t,ln RT
(λ) = exp(iλ(r − 1

2σ
2)T − 1

2λ
2σ 2T ).

The right-hand side is the characteristic function of a normal distribution with mean
(r − 1

2σ
2)T and variance σ 2T . We have now proved that log returns are distributed

normally in the limit under risk-neutral measure.

7.5.3 Working Out Probabilities from the Characteristic Function via FFT

Theorists are often able to furnish us with the characteristic function of the log
return distribution, but in the more complicated cases it is difficult to work out the
corresponding probability density. One can, however, discretize the log return and
find the density of the discretized variable using FFT. Here is how this procedure
works.

We are given the theoretical value of φ(λ), say φ(λ) = e−λ2/2. We know that

φ(λ) = EQ[eiλX] =
∫ ∞

−∞
eiλxf (x) dx,
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where X is the log return and f (x) is its risk-neutral density. Since f must go to
zero at ±∞ we can approximate the integral on the right-hand side by an integral
over a finite interval [xmin, xmax]

φ(λ) ≈
∫ xmax

xmin

eiλxf (x) dx,

which in turn can be approximated by a sum if we subdivide the interval [xmin, xmax]
into n equally sized segments with length �x = (xmax − xmin)/n,

φ(λ) ≈
n∑

j=0

eiλ(xmin+(j+1/2)�x) f (xmin + (j + 1/2)�x)�x︸ ︷︷ ︸
qj

,

where qj are the risk-neutral probabilities of the discretized return. Divide both
sides by eiλxmin and by

√
n:

φ(λ)e−iλ(xmin+�x/2)

√
n

≈
∑n−1

j=0 eiλj�xqj√
n

. (7.27)

The sum on the right-hand side would look exactly like the discrete Fourier transform
(7.11) of the risk-neutral probabilities q if λj�x were equal to (2π/n)jk:

λj�x = (2π/n)jk. (7.28)

But we know φ(λ) for all values of λ, so nothing stops us from selecting n specific
values of λ satisfying (7.28),

λk = 2πk

n�x
for k = −n

2
,−n

2
+ 1, . . . ,

n

2
− 1.

It is important that k takes both negative and positive signs because φ(λ) comes
from a continuous transform and it is not periodic in λ.

For these specific values of λ denote the left-hand side of (7.27) by bk ,

bk = φ(λk)e−iλk(xmin+�x/2)

√
n

,

then (7.27) can be rephrased in terms of the discrete Fourier transform as

b = F (q).

Conversely, we can recover q from b by using the inverse transform,

q = F −1(b).

Take the specific example with φ(λ) = e−λ2/2. Let us approximate the density
in the range [−3, 3] using 600 points. We have �x = 0.01 and

λk = 2πk

6
for k = 0, 1, . . . , 599,

bk = e−(λ2
k/2)+i3λk

√
600

.

The MATLAB code for the computation of q is given in Exercise 7.2. The nu-
merically obtained density q/�x is indistinguishable from the theoretical values
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of the standard normal density which corresponds to the characteristic function
φ(λ) = e−λ2/2.

7.5.4 Affine Processes

Affine processes appear to be the most promising tool in modern financial analysis.
They feature prominently in option pricing, interest rate and credit derivative mod-
elling, and are also increasingly used to study optimal portfolio allocation. It would
be futile trying to summarize the vast number of existing applications of affine pro-
cesses in finance; the notes at the end of the chapter only serve as a starting point.
This section cannot give an exhaustive treatment; it is here to alert readers to the
existence of affine processes and the whole new world of opportunities they offer.

The geometric Brownian motion model of stock prices is the simplest example
of an affine structure. In short a process ln S is affine if the characteristic function
of ln ST , EQ

t [eiλ ln ST ] is of the exponential affine form ea(t,T ,λ)+b(t,T ,λ) ln St , where
a and b are complex functions of λ. In the Black–Scholes model, for example,

EQ
t [eiλ ln ST ] = ei(r−σ 2/2)(T−t)λ−(σ 2T/2)λ2+iλ ln St .

Affine models offer both flexibility and tractability. They permit asset returns to be
serially correlated, allow for correlations across assets and also permit the presence
of jumps, which is particularly important for the modelling of fat tails in asset
returns. At the same time, the affine structure of the characteristic function often
allows coefficients a, b to be evaluated in closed form which then permits, using
the technique of Section 7.5.3, simple recovery of the risk-neutral distribution and
consequently fast pricing.

Consider as an example the celebrated Heston model of stochastic volatility used
in option pricing. The Black–Scholes model assumes that the return volatility is
constant over time. In practice, price predictions from the constant volatility model
do not fit the market data well across different strikes; this phenomenon is known
as volatility smile or smirk. Heston’s model resolves this problem by allowing
volatility to be stochastic,

dσ 2
t = (α − σ 2

t ) dt + σ̃ σt dBQ
1 ,

d ln S = (r − 1
2σ

2
t ) dt + σt dBQ

2 ,

where the volatility shocks dBQ
1 can be correlated with the stock return shocks dBQ

2 .
The characteristic function of ln ST has the affine exponential form,

EQ
t [eiλ ln ST ] = ea(T−t,λ)+b(T−t,λ)σ 2

t +iλ ln St ,

where a and b are known in closed form. Once the characteristic function is known
fast option pricing is available via the techniques of Section 7.5.3.

7.6 Notes

The fast Fourier transform does not appear in undergraduate textbooks on numerical
mathematics and the most useful references on the introductory level are web based
(see http://www.fftw.org/links.html). A fast implementation of the
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FFT, taking into account computer architecture, is suggested in Frigo and Johnson
(1998); it is implemented in MATLAB. Duhamel and Vetterli (1990) is an excellent
survey of FFT algorithms. The classic account of radix-nFFT is in Cooley and Tukey
(1965). The improvement of the radix-4 over the radix-2 algorithm is documented
in Yavne (1968) and more accessibly in Duhamel and Holman (1984). The prime
factor algorithm is due to Kolba and Parks (1977). The prime length algorithm
appears in Rader (1968). Number theoretical transforms (NTTs) are closely related
to FFTs and can be used to calculate circular convolutions (see McClellan and Rader
1979; Pollard 1971). Efficient implementation of mixed 2,3,5-radix algorithm is due
to Temperton (1992).

Affine processes find a large number of applications in finance. For an exhaustive
characterization of affine processes see Duffie et al. (2003) and Kallsen (2006). An
important subclass of affine models appears in Carr and Wu (2004). Heston (1993)
is the example given in the main text of this chapter. Exponential Lévy processes
represent a special class of affine processes used to model IID stock returns with
fat-tailed distribution (see Eberlein and Keller 1995; Madan and Seneta 1990). The
use of FFTs in option pricing in conjunction with continuous Fourier transforms
was pioneered in Carr and Madan (1999). For other applications of FFT in finance
and related issues see Černý (2004a) and Černý (2009) and the references therein.
Convergence in distribution and Lévy’s continuity theorem can be found in Ash and
Doléans-Dade (1999).

7.7 Appendix

7.7.1 Inverse Discrete Fourier Transform

To show F −1(F (a)) = a we need to prove that for b = F (a) defined in (7.11) we
have F −1(b) = a. Denote ã = F −1(b) and express ã from definition (7.12):

ãl = 1√
n

n−1∑
k=0

bkz
−kl
n .

Now substitute for bk from (7.11)

= 1

n

n−1∑
k=0

(n−1∑
j=0

aj z
jk
n

)
z−kl
n ,

move z−kl
n inside the inner summation

= 1

n

n−1∑
k=0

(n−1∑
j=0

aj z
k(j−l)
n

)
,

change the order of summation

= 1

n

n−1∑
j=0

(n−1∑
k=0

aj z
k(j−l)
n

)
,
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and take aj in front of the inner sum (it does not depend on k)

= 1

n

n−1∑
j=0

aj

(n−1∑
k=0

(z
j−l
n )k

)
.

By virtue of (7.8) and (7.9) the inner sum
∑n−1

k=0(z
j−l
n )k equals 0 for j �= l and for

j = l it equals n. Consequently,

ãl = 1

n

n−1∑
j=0

aj

(n−1∑
k=0

(z
j−l
n )k

)
= al

for all l, which proves that F −1(F (a)) = a.

7.7.2 Fourier Transform of Convolutions

We wish to show F (a � b) = F (a)F (b). Let us begin by computing c = a � b.
From the definition (7.15),

cj =
n−1∑
k=0

aj−kbk. (7.29)

Set d = F (c), and use the definition (7.11) to evaluate dl

dl = 1√
n

n−1∑
j=0

cj z
jl
n .

Now substitute for cj from (7.29)

= 1√
n

n−1∑
j=0

(n−1∑
k=0

aj−kbk

)
z
jl
n ,

move zjl inside the inner bracket, writing it as a product zjl = z(j−k)lzkl ,

= 1√
n

n−1∑
j=0

n−1∑
k=0

aj−kz
(j−k)lbkz

kl,

change the order of summation

= 1√
n

n−1∑
k=0

n−1∑
j=0

aj−kz
(j−k)lbkz

kl,

and take bkz
kl in front of the inner summation (it does not depend on j )

= 1√
n

n−1∑
k=0

bkz
kl

(n−1∑
j=0

aj−kz
(j−k)l

)
. (7.30)
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It is easy to realize that the inner sum does not depend on k, because it always adds
the same n elements, only the order in which they are added depends on k (we are
completing one full turn around the circle, starting at the kth spoke). Hence we have

n−1∑
j=0

aj−kz
(j−k)l =

n−1∑
j=0

aj z
jl for all k,

and substituting this into (7.30) we finally obtain

dl = √
n

(
1√
n

n−1∑
k=0

bkz
kl

)
︸ ︷︷ ︸

b̃l

(
1√
n

n−1∑
j=0

aj z
jl

)
︸ ︷︷ ︸

ãl

,

where, from the definition of the forward transform (7.11),

ã = F (a),

b̃ = F (b),

which completes the proof.

7.8 Exercises

Exercise 7.1 (unconditional distribution of returns and FFT). Consider a 3-
period binomial model with conditional risk-neutral probabilities qu = qd = 0.5. It
is easy to verify that the unconditional probability of reaching the four nodes atT = 3
is
[
0.125 0.375 0.375 0.125

]
. The same result can be obtained from DFT as

follows. Take n = T + 1, b = [qu qd 0 0
]

and evaluate F −1((
√
nF (b))T ).

Your task is to use the same principle to generate data for Figures 6.4–6.6.

Exercise 7.2 (recovering risk-neutral distributions from the characteristic func-
tion). Implement Section 7.5.3 in MATLAB using fast Fourier transforms.
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Information Management

In Chapter 5 we were deliberately vague about the meaning of ‘information avail-
able at time t’. It turns out that the amount of information needed to price a security
or to solve a dynamic optimal investment problem varies from case to case, and
that the information plays a crucial role in implementing the solution in reality.
This chapter introduces the necessary terminology to describe the different amounts
of information that are used in theory and practice, discussing notions of path de-
pendency, state variables, Markov property of stochastic processes, information
filtration, adaptedness and measurability. The required background reading for this
chapter is Section 5.4.

8.1 Information: Too Much of a Good Thing?

A specific feature of the option pricing example in Chapter 5 is that one does not need
all the information available at time t to value the option. By ‘all the information’
we mean the whole history of stock prices until the present day. In our model,
whether the stock price goes up and then down or down and then up, the option
price at t = 2 is still the same £44.25 (see Figure 8.1).

In such a case we say that the option price is independent of the path of stock
prices, in short it is path-independent. It is definitely a good thing that we do not
have to use all the information hidden in the history of stock prices, because one
can very quickly accumulate too much information. Just consider how many paths
there are in our decision tree. For this purpose each path is depicted separately in
Figure 8.2.

After 30 periods we accumulate 230 = 109 paths, which proves too much even for
modern computers. And 30 periods is nothing if one considers trading once a day for
a few months! Consider, on the other hand, the recombining tree in Figure 8.1—it
would only have 30 nodes at the end of 30 periods! Path independence significantly
reduces the amount of memory storage required to compute the option price; it
is therefore essential to understand where the path independence is coming from,
which is the topic of the next section.

8.1.1 State Variables: The Information that Matters

Stock prices in our model have the following remarkable feature: the risk-neutral
probability of achieving a particular level of stock price in the future does not depend
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Option price 599.64
317.54

162.65 102.00
81.36 44.25

19.19 0.00
0.00

0.00
t = 0 t = 1 t = 2 t = 3

Figure 8.1. Option price exhibiting path independence.

Stock price histories Path

5954.64 uuu
5654.93

5457.00 uud
5370.30

5457.00 udu
5182.34

5000.96 udd
5100.00

5457.00 duu
5182.34

5000.96 dud
4921.50

5000.96 ddu
4749.25

4583.02 ddd

t = 0 t = 1 t = 2 t = 3

Figure 8.2. Non-recombining tree depicting all stock price histories.

on the history of past prices, only on the last known price. For example,

Q(S3 = 5457.00 | S2 = 5182.34, S1 = 5370.30, S0 = 5100.00)

is the same as

Q(S3 = 5457.00 | S2 = 5182.34, S1 = 4921.50, S0 = 5100.00),

namely 0.435 22. The values of S1 and S0 do not matter for the conditional distri-
bution of S3 viewed from t = 2, all that matters is the value of S2.

More generally, if the last known price is St , then the distribution of stock price
k steps ahead, St+k , conditional on the price history up to and including time t ,
S0, . . . , St , only depends on St for all t and all k. A process S with this property is
called a Markov process.

Since our stock price is Markov under the risk-neutral probability, we can take
nodes in Figure 8.3 with identical stock prices and put them on top of each other
and the corresponding conditional probabilities will perfectly overlap too. We say
that the nodes in the tree, and the corresponding probabilities on the branches,
recombine; the resulting recombining tree is shown in Figure 8.4.
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Stock price histories with one-step risk-neutral conditional probabilities Path
0.43522 5954.64 uuu

5654.93

0.43522 0.56478 5457.00 uud
5370.30

0.56478 0.43522 5457.00 udu

0.43522 5182.34

0.56478 5000.96 udd
5100.00

0.43522 5457.00 duu
0.56478 5182.34

0.43522 0.56478 5000.96 dud
4921.50

0.56478 0.43522 5000.96 ddu
4749.25

0.56478 4583.02 ddd

t = 0 t = 1 t = 2 t = 3

Figure 8.3. Information tree nodes with identical stock price.

Stock price histories with one-step risk-neutral conditional probabilities Path
0.43522 5954.64 uuu

5654.93

0.43522 0.56478 5457.00 uud
5370.30

0.43522
0.56478

0.43522 5457.00
5100.00 5182.34

0.56478 5000.96
0.56478 0.43522

4921.50
0.56478 0.43522 5000.96 ddu

4749.25

0.56478 4583.02 ddd

t = 0 t = 1 t = 2 t = 3

Figure 8.4. A Markov process allows nodes with the same value to recombine,
together with the conditional probabilities on the branches.

8.1.2 Path (In)dependence of Option Prices

We are now ready to explain the path independence of option prices. Recall that the
option price at the terminal date T = 3 is equal to the intrinsic value of the option,

CT = max(ST − K, 0).

For a given option contract the strike K is fixed, therefore CT only depends on ST .
Recall now that

CT−1 = 1

Rf
EQ
T−1[CT ].
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Table 8.1. Trading instruction, ‘Buy X shares’.

Path uuu uud udu udd duu dud ddu ddd
X 1 1 1 1 2 2 2 2

Furthermore, CT only depends on ST , and the conditional risk-neutral probabilities
of ST depend only on ST−1. Consequently, EQ

T−1[CT ] only depends on ST−1 and
as a result CT−1 only depends on ST−1. Now

CT−2 = 1

Rf
EQ
T−2[CT−1],

CT−1 depends on ST−1, the conditional distribution of ST−1 only depends on ST−2
and consequently CT−2 depends only on ST−2, etc.

Two factors combine to generate path-independent option prices. Firstly, the
option payoff at expiry is path-independent—CT only depends on ST and not on
the entire history of stock prices. Secondly, stock price is a Markov process under
the risk-neutral probabilities, which then implies that CT−1 depends on ST−1, etc.
The stock price acts as a state variable; all quantities of interest—the option price
and the hedging portfolio—can be written as a function of this state variable. The
second state variable is time—the option price not only depends on the stock price,
it also depends on the time to expiry.

Very few problems in finance exhibit as little path dependency as European call
option pricing. For example, the payoff of an exotic option called the ‘lookback
option’ depends not only on the stock price at expiry but also on the lowest stock
price in the period between the day of issue and the expiry date. If the stock price
is a Markov process under risk-neutral probabilities, then the no-arbitrage price of
a lookback option will depend on three state variables: the current stock price, the
lowest stock price to date and the time to expiry.

8.1.3 All Available Information and Insider Trading

The previous section highlighted the importance of state variables in managing
the amount of information contained in the history of stock prices. In short, state
variables contain all the relevant information. But while it is true that one never
wants to use more information than necessary in practice, in theoretical work it is
often handy to be able to fall back on the notion of all available information. First
of all, it is often difficult to tell what constitutes the relevant information in a given
problem beforehand. For example, in optimal investment new state variables are
generated in the process of finding the best investment strategy. Secondly, keeping
track of all available information at a given point in time is useful for ruling out
trading strategies with ‘insider’ knowledge.

We have already mentioned above that all available information can be represented
by the non-recombining stock price tree (see Figure 8.2). Suppose at time t = 0
a trader receives the instruction, ‘Buy X shares’, where X is as given in Table 8.1.
Interestingly, the trader does not have to wait until t = 3 to execute this order. If the
stock price moves up at the beginning, it is clear that the order says, ‘Buy 1 share’.
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Table 8.2. Two dynamic trading strategies,
represented by the stochastic processes X and Y .

Path X0 X1 X2 X3 Y0 Y1 Y2 Y3

uuu 1 1 1 1 1 1 1 0
uud 1 1 1 0 1 1 0 0
udu 1 1 0 1 1 0 1 0
udd 1 1 0 0 1 0 0 0
duu 1 0 1 1 0 1 1 0
dud 1 0 1 0 0 1 0 0
ddu 1 0 0 1 0 0 1 0
ddd 1 0 0 0 0 0 0 0

If, on the other hand, the stock price goes down at the beginning, then it is clear that
the order instructs to ‘Buy 2 shares’. We can see that the information available at
t = 1 is sufficient to pin down the value of X exactly. In such a case mathematicians
say that the random variable X is F1-measurable1, where Ft is the set of all events
identifiable at time t . Naturally, if X is known at t = 1, then it is also known at
t = 2, 3 but not necessarily at t = 0, as is the case here.

Now, with the same X, consider the order, ‘Buy X shares now!’ at t = 0. Clearly,
this cannot be done unless we know at t = 0 what the stock price will do at t = 1.
People possessing such privileged information are called insiders and they face
heavy penalties should they use their inside information for trading on their own
behalf. This observation gives us a restriction on permissible trading strategies.
Namely, if Xt is an instruction to buy Xt shares at time t , then in the absence of
insider trading Xt has to be Ft -measurable, that is, Xt must be an instruction that
depends only on past and present prices. When this is the case for all t = 0, 1, 2, 3 we
say that the stochastic process {Xt }t=0,1,2,3 is adapted to the information filtration
{Ft }t=0,1,2,3 generated by the stock prices.

There is an easy way to check whether a process X is adapted to the stock price
information. If X can be written into the non-recombining information tree in
Figure 8.2 using one number per node, then X is adapted to the filtration generated
by stock prices. If more than one number appears at any given node, then X looks
into the future and executing it is tantamount to insider trading. As an example
consider two trading strategies, X and Y , given in Table 8.2.

Figure 8.5 shows that strategy X is adapted, because it uses only past and current
information. In words the strategy says, ‘Buy 1 share after the price has gone up,
otherwise do not trade’. On the other hand, Y is not adapted, quite naturally because
the strategy means, ‘Buy 1 share if the price will go up, otherwise do not trade’.

8.2 Model-Independent Properties of Conditional Expectation

It is essential to be able to evaluate various conditional expectations directly on
the tree, as we have done when computing option prices in Chapter 5. But, in

1For a more detailed explanation refer to Section 8.5.
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Path
1 uuu

1
0 uud

1
1 udu

0
0 udd

1
1 duu

1
0 dud

0
1 ddu

0
0 ddd

Path
0 uuu

0 or 1
0 uud

0 or 1
0 udu

0 or 1
0 udd

0 or 1
0 duu

0 or 1
0 dud

0 or 1
0 ddu

0 or 1
0 ddd

Trading strategy X

t = 0 t = 1 t = 2 t = 3

Trading strategy Y

Figure 8.5. Adapted and non-adapted trading strategies depicted in the information tree.

practice, building a physical model costs time and in complex situations can even be
counterproductive—just try and put a three-dimensional tree into an Excel spread-
sheet! It is therefore equally important to be able to evaluate with just pen and paper
conditional expectations without a physical model. In this section we will high-
light a few useful manipulations involving conditional expectations that are model
independent.

8.2.1 Conditional Expectation as a Random Variable

The expectation of X conditional on the information at time t , Et [X], can have as
many values as there are nodes in the information tree at time t . As an example let
us calculate EQ

1 [S2]. In the upper node at time t = 1 we have

EQ
1 [S2] = 0.435 22 × 5654.93 + 0.564 78 × 5182.34 = 5388.02
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Table 8.3. Conditional expectation as a random variable.

Path uuu uud udu udd duu dud ddu ddd
E1[S2] 5388.02 5388.02 5388.02 5388.02 4937.74 4937.74 4937.74 4937.74

and in the lower node

EQ
1 [S2] = 0.435 22 × 5182.34 + 0.564 78 × 4749.25 = 4937.74.

Since the conditional expectation E1[S2] can change from node to node we have to
treat it as a random variable, as indicated in Table 8.3.

The randomness, however, is always such that E1[S2] is known at time 1.

Regardless of specific model, Et [X] is always known at time t .

8.2.2 Two Important Rules

Conventional wisdom tells us that E[aX] = aE[X] if a is a non-random entity. Now
consider a similar expression,

E1[S1S2],
where as before S1 is known at time t = 1, whereas S2 is only known at time
t = 2. Since S1 is known at t = 1, it acts as a constant for expectation at t = 1 and
consequently

E1[S1S2] = S1E1[S2],
and conversely

S1E1[S2] = E1[S1S2].

This is known as the law of conditional constant:

Et [XY ] = XEt [Y ] if X is known at time t.

In addition, we have the law of iterated expectations, discovered in Section 5.5:

Et [Es[X]] = Es[Et [X]] = Et [X] for t � s.

8.2.3 Examples

Example 8.1. Calculate
E[S3]

if the objective conditional distribution of returns is given by (5.1) and (5.2).

Solution. We can write the terminal stock price in terms of one-step returns

S3 = S0
S1

S0

S2

S1

S3

S2
,

obtaining

E[S3] = E

[
S0

S1

S0

S2

S1

S3

S2

]
.
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Now S0 is known at t = 0; therefore, we can take it in front of the expectation,

E[S3] = S0E

[
S1

S0

S2

S1

S3

S2

]
.

By the law of iterated expectations,

E

[
S1

S0

S2

S1

S3

S2

]
= E

[
E1

[
E2

[
S1

S0

S2

S1

S3

S2

]]]
.

Consider the innermost expectation. Because S2, S1 and S0 are known at t = 2 we
can take (S1/S0)(S2/S1) in front of E2[.]:

E

[
E1

[
E2

[
S1

S0

S2

S1

S3

S2

]]]
= E

[
E1

[
S1

S0

S2

S1
E2

[
S3

S2

]]]
.

Similarly, we can take S1/S0 in front of E1[.] to obtain

E

[
S1

S0

S2

S1

S3

S2

]
= E

[
S1

S0
E1

[
S2

S1
E2

[
S3

S2

]]]
.

It is easy to compute

EP
t

[
St+1

St

]
,

from (5.1) and (5.2),

Et

[
St+1

St

]
= 1

2Ru + 1
2Rd = 1.009.

Consequently,

E

[
S1

S0
E1

[
S2

S1
E2

[
S3

S2

]]]
= E

[
S1

S0
E1

[
S2

S1
1.009

]]

= E

[
S1

S0
1.0092

]
= 1.0093,

and as a result
E[S3] = S01.0093. (8.1)

Note that our calculation does not require returns to be independent, only that the
conditional one-step expected return is constant over time.

Example 8.2. Find the conditional variance of S3 as seen at time t = 1 under the
objective probability.

Solution. The conditional variance is naturally defined in the same way as the normal
variance except one uses the conditional instead of the unconditional expectation,
that is,

Var1(S3) := E1[(S3 − E1[S3])2]
= E1[S2

3 ] − (E1[S3])2.
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From the previous exercise we can deduce that E1[S3] = 1.0092S1, so it remains to
calculate E1[S2

3 ]. Using a similar procedure as in the previous exercise we obtain

E1[S2
3 ] = S2

1 E1

[
S2

2

S2
1

E2

[
S2

3

S2
2

]]
.

Again

Et

[
S2
t+1

S2
t

]
is easy to evaluate

Et

[
S2
t+1

S2
t

]
= 1

2R
2
u + 1

2R
2
d = 1.0092 + 0.0442

and therefore
E1[S2

3 ] = S2
1 (1.0092 + 0.0442)2.

To conclude

Var1(S3) = S2
1 ((1.0092 + 0.0442)2 − 1.0094) = 0.003 95S2

1 .

8.3 Summary

• How much information is needed to determine the security price depends on
two factors, firstly how complex is the security’s cash flow and secondly how
complex is the conditional risk-neutral distribution of the variables determin-
ing the cash flow. Regarding the latter aspect, we say that the stock price
process is Markov under a given probability measure if the future distribution
of stock prices under that measure depends only on the last known price and
not on the entire stock price history. Graphically, a process is Markov if the
nodes with identical value also carry identical one-step conditional probabil-
ities on the branches, that is, when the nodes with identical values recombine.

• If the stock price is a Markov process under objective probabilityP , it does not
automatically follow that it must be a Markov process under the risk-neutral
probability Q, and vice versa. When one talks about the Markov property it
is important to specify what probability measure one has in mind. Q is the
relevant measure for pricing.

• If the cash flow depends only on the stock price and the stock price is a Markov
process under risk-neutral probability, then the stock price and time to expiry
is all one needs to determine the no-arbitrage value of the cash flow. We say
that the stock price and time act as state variables. In general, state variables
summarize all the necessary information in a given problem. The use of
state variables significantly reduces the amount of information required to
express the solution, bearing in mind that all available information increases
exponentially with time.

• In our simple market with one risky asset all available information is repre-
sented by the stock price history. The information available at a given time can
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be depicted using a non-recombining tree for stock prices. Mathematically,
information filtration is a collection of growing σ -algebras {Ft }t=0,1,...,T ,
where Ft contains all the events that can be verified as true or false at time t .

• To rule out trading strategies that use privileged information about future
prices (insider trading), we require that any instruction Xt for trading at time t

depends only on the publicly available information at time t . Mathematically,
we require Xt to be a Ft -measurable random variable. When this is the case
for all t we say that the trading strategy {Xt }t=0,1,...,T is a process adapted to
the stock price filtration. Graphically, process X is adapted if it can be written
into the non-recombining stock price tree using one value per node.

• It is often desirable to manipulate conditional expectations without a physical
model. Three useful model-independent rules are

(1) the law of iterated expectations,

Et [Es[X]] = Es[Et [X]] = Et [X]
for t � s and any random variable X;

(2) the law of conditional constant,

Et [XY ] = XEt [Y ]
if X is known at time t , that is if X is Ft -measurable;

(3) Et [X] is always known at time t .

8.4 Notes

The exposition in this chapter follows Pliska (1997). A more detailed and more
advanced introduction to probability spaces can be found in Shreve (2004a) and
Williams (1991); see also references therein.

8.5 Appendix: Probability Space

This appendix is intended for those who are interested in the theoretical founda-
tion of probability. Here the reader will find more detailed definitions of events,
σ -algebras, stochastic processes, information filtration, adaptedness, etc. Do not
worry if you find this appendix too difficult to grasp—the intuition developed in
the main body of the chapter is sufficient for most practical purposes. At the same
time this introduction barely scratches the surface of the mathematical complexities
needed to develop the theory of stochastic processes in full. The first reference in
this direction is Williams (1991).

To set the scene for random variables one needs three essential ingredients: the
set of elementary outcomes Ω , the set of all events F and, if one wishes to talk
about expectations, a probability measure, here denoted P . As an example take the
non-recombining tree of stock price histories in Figure 8.6.

In this case the set of elementary outcomes is the set of all paths,

Ω = {uuu, uud, udu, udd, duu, dud, ddu, ddd},



180 8. Information Management

Stock price histories Path

5954.64 uuu
5654.93

5457.00 uud
5370.30

5457.00 udu
5182.34

5000.96 udd
5100.00

5457.00 duu
5182.34

5000.96 dud
4921.50

5000.96 ddu
4749.25

4583.02 ddd

t = 0 t = 1 t = 2 t = 3

Figure 8.6. Stock price histories.

and the set of all events F is the set of all subsets of Ω (sometimes called the
potential set of Ω and denoted by 2Ω ),

F = 2Ω.

The probability P assigns a real number between 0 and 1 to each event in F ,

P : F →[0, 1].
In addition P must satisfy these two natural conditions:

(1) P(Ω) = 1 ‘probability of the certain event is 1’;
(2) if A1, A2, . . . is a sequence of mutually exclusive events in F , then

P

[ ∞⋃
i=1

Ai

]
=

∞∑
i=1

P(Ai) (8.2)

‘the probability of a countable union of mutually exclusive events is equal to
the sum of probabilities of the individual events’.

In the example above there are no more than eight mutually exclusive events,
namely {uuu}, {uud}, . . . , {ddd}. In this case it suffices to specify the probability
for each of these elementary events. The same construction will work with countably
many mutually exclusive events.

8.5.1 Too Many Events: σ -Algebra to the Rescue

To motivate what comes next we need to digress a little. As soon as one considers
a sample space Ω with uncountably many outcomes, one runs into difficulties with
having too many events. Let us take Ω to be an interval [−0.3, 0.3] representing
elementary outcomes of the random variable ‘annual rate of return’. In this case
one cannot define the set of events F as the set of all subsets of Ω , simply because
inside this collection there will always be events that cannot be assigned probability
without creating contradiction. Namely, any interval Ω can be decomposed into a
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countable number of mutually exclusive and equally probable events Ai such that⋃∞
i=1 Ai = Ω . By (8.2) this would imply

1 =
∞∑
i=1

P(Ai)

but since all P(Ai) are the same, it can only be the case that the right-hand side is
either 0 or ∞ (for construction of Ai refer to Williams (1991)).

In this instance the right way to define the probability measure P is to determine
the probability of events (−∞, x], making sure that the probability is growing with
x. Using property (8.2) one can then compute the probabilities of finite unions and
intersections and ultimately the probability of countable unions and intersections
of intervals. The ultimate set of events for which probabilities can be computed in
this way is called the Borel σ -algebra in R and it contains all the events that can
be safely considered within probability theory. The concept of σ -algebra can be
extended to very complicated sets of elementary outcomes Ω , which arise if one
wants to consider continuous-time stochastic processes, but that is already beyond
the scope of this introduction.

8.5.2 Information

Information filtration is a collection of growing σ -algebras indexed by time
{Ft }t=0,1,...,T . The most important is the set of events attached to the terminal
date FT . Being the largest one it sets the limits and defines our probability space
as {Ω,F = F T , P }. In Figure 8.6 above the collection of all elementary events
corresponds to the nodes at t = 3,

P3 = {{uuu}, {uud}, {udu}, {udd}, {duu}, {dud}, {ddu}, {ddd}}.
These ‘elementary’ events can be combined to generate the set of all events which
are identifiable at time t = 3, the σ -algebra F3:

F3 = {{uuu}, {uud}, {udu}, {udd}, {duu}, {dud}, {ddu}, {ddd},
{uuu, uud}, . . . , {ddu, ddd}

(all combinations of two events in P3)

{uuu, uud, udu}, . . . , {dud, ddu, ddd}
(all combinations of three events in P3)

{uuu, uud, udu, udd}, . . .
(all combinations of four events in P3)

(all combinations of five events in P3)

(all combinations of six events in P3)

(all combinations of seven events in P3)

{uuu, uud, udu, udd, duu, dud, ddu, ddd} (certain event) ,

∅ (impossible event)}.
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The reader should bear in mind that in spite of all the mathematical notation the events
in F3 have real meaning, for example, combination {duu, dud, ddu} corresponds to
the event ‘stock price at t = 1 is lower than 5000 and stock price at t = 3 is greater
than 5000’.

At time t = 2 one can distinguish four elementary events, corresponding to the
four nodes at time t = 2 in Figure 8.6,

P2 = {{uuu, uud}, {udu, udd}, {duu, dud}, {ddu, ddd}}.
Combinations of these four nodes generate all events discernible at t = 2:

F2 = {{uuu, uud}, {udu, udd}, {duu, dud}, {ddu, ddd},
{uuu, uud, udu, udd}, . . .

(all combinations of two events in P2)

{uuu, uud, udu, udd, duu, dud}, . . .
(all combinations of three events in P2)

Ω (certain event),

∅ (impossible event)}.
At time t = 1 one can distinguish two elementary events, corresponding to the

two nodes at time t = 2 in Figure 8.6:

P1 = {{uuu, uud, udu, udd}, {duu, dud, ddu, ddd}}.
Combinations of these two nodes generate all events identifiable at t = 1:

F1 = {{uuu, uud, udu, udd}, {duu, dud, ddu, ddd},
Ω (certain event),

∅ (impossible event) }.
Finally, at t = 0 we have a trivial algebra of events:

P0 = {Ω},
F0 = {Ω (certain event), ∅ (impossible event) }.

8.5.3 Random Variables

On a probability space {Ω,FT , P } a random variable is any function X assigning
real numbers to elementary outcomes

X : Ω → R

such that the values of X can be identified using events in FT , that is,

X is such that for all real numbers u the event (X � u) belongs to Ft .

In short X is a random variable on {Ω,FT , P } if it is FT -measurable, if it is known
at time T . A collection of random variables {Xt }t=0,1,...,T indexed by time is called
a stochastic process. A stochastic process is adapted to filtration {Ft }t=0,1,...,T if in
addition Xt is Ft -measurable for t = 0, 1, . . . , T .
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Path
{uuu} uuu

{uuu,uud}
{uud} uud

{uuu,uud,udu,udd}
{udu} udu

{udu,udd}
{udd} udd

certain event
{duu} duu

{duu,dud}
{dud} dud

{duu,dud,ddu,ddd}
{ddu} ddu

{ddu,ddd}
{ddd} ddd

t = 0 t = 1 t = 2 t = 3

Figure 8.7. Information filtration.

8.5.4 Conditional Expectation

Let X be a random variable on a filtered probability space {Ω, {Ft }t=0,1,...,T , P }.
The conditional expectation Et [X] = E[X | Ft ] is formally defined as the Ft -
measurable random variable Y minimizing the expectation,

E[(X − Y )2].
With a countable number of elementary outcomes this boils down to evaluating
expectations node by node.

8.6 Exercises

Exercise 8.1 (information filtration). Figure 8.7 represents the resolution of un-
certainty over three discrete-time intervals. To describe the information filtration,
we identify the smallest events that can be recognized at a given time point. In
Figure 8.7 at t = 3 these events are {uuu}, {uud}, . . . , {ddd}; at time t = 2 they are
{uuu, uud}, {udu,udd}, {duu, dud}, {ddu, ddd} and so on. We write this down in the
following form:

P3 = {{uuu}, {uud}, {udu}, {udd}, {duu}, {dud}, {ddu}, {ddd}},
P2 = {{uuu, uud}, {udu, udd}, {duu, dud}, {ddu, ddd}},
P1 = {{uuu, uud, udu, udd}, {duu, dud, ddu, ddd}},
P0 = {{uuu, uud, udu, udd, duu, dud, ddu, ddd}}.

Effectively, the set Pt describes the nodes at time t in Figure 8.7. The events in the set
Pt generate an algebra of eventsFt . In the above case we haveF0 ⊂ F1 ⊂ F2 ⊂ F3,
that is, {Ft }3

t=0 is indeed an information filtration.
Consider now a recombining tree with the same paths (see Figure 8.8). For

example, the meaning of the middle node at time t = 2 is ‘stock price goes up
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{udu,udd,duu,dud}

t = 0 t = 1 t = 2 t = 3

Figure 8.8. Nodes in the recombining tree.

then down, or first down and then up’, which in terms of paths gives an event
{udu, udd, duu, dud}.

(a) Describe the nodes of the recombining tree in Figure 8.8.

P3 =
P2 =
P1 =
P0 =

(b) Decide whether the sequence of algebras generated by P0, . . . ,P3 is a filtra-
tion.

Exercise 8.2. Figure 8.9 represents an information filtration with four distinct time
paths uu, ud, du, dd. Tables 8.4 and 8.5 describe five stochastic processes V , W , X,
Y , Z.

(a) Which of the processes V , W , X, Y , Z are adapted to the filtration F ? Tick
the corresponding box in Table 8.6.

(b) Amongst those that are adapted, classify the processes into the following
categories by ticking the appropriate box in Table 8.7:

(1) deterministic (U0, U1, U2 all known at time 0, that is, they are all F0-
measurable); these are further divided into
(i) constant (i.e. deterministic and time independent, U0 = U1 =

U2 = const.);
(ii) time-dependent (U0, U1, U2 not all equal, but all known at time 0);

(2) genuinely stochastic (that is, NOT deterministic).

(c) When is the value of V2 (W2, X2, Y2, Z2) known for the first time with cer-
tainty? (Mathematically, what is the smallest t such thatV2 isFt -measurable?)
Tick the appropriate box in Table 8.8.

Exercise 8.3. Table 8.9 gives the unconditional probabilities and a value of the
random variable X for each path in a three-step non-recombining binomial tree.
Find the following conditional expectations and write them in Table 8.9: E2[X],
E1[X], E2[E1[X]], E1[E2[X]], E[X].
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Path

{uu} uuu
{uu,ud}

{ud} uud
{uu,ud,du,dd}

{du} udu
{du,dd}

{dd} udd

t = 0 t = 1 t = 2

Figure 8.9. Information filtration.

Table 8.4. Processes V , W , X.

Path V0 V1 V2 W0 W1 W2 X0 X1 X2

uu 3 3 3 1 6 6 1 1 1
ud 2 2 2 1 6 6 1 1 1
du −1 −1 −1 1 4 −3 1 1 1
dd 1 1 1 1 4 −3 1 1 1

Table 8.5. Processes Y , Z.

Path Y0 Y1 Y2 Z0 Z1 Z2

uu 1 6 1 1 6 −2
ud 1 6 2 1 6 −2
du 1 2 3 1 6 −2
dd 1 2 −88 1 6 −2

Table 8.6.

Process V W X Y Z

Adapted
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Table 8.7. Classification of stochastic processes.

Deterministic
Process Constant Time dependent Stochastic Not adapted

V

W

X

Y

Z

Table 8.8. Timing of information disclosure.

Random First revealed at t = ?
variable t = 0 t = 1 t = 2

V2
W2
X2
Y2
Z2

Table 8.9. Conditional expectations.

Outcome ω P({ω}) X E2[X] E1[X] E2[E1[X]] E1[E2[X]] E[X]
uuu 1

18 8

uud 1
18 7

udu 1
9 6

udd 1
9 5

duu 1
6 4

dud 1
6 3

ddu 1
6 2

ddd 1
6 1



9
Martingales and Change of

Measure in Finance

This chapter has the thankless task of doing the groundwork for continuous-time
finance, and some of the concepts studied here, particularly martingales, will not
come into play until Chapter 11, when we rederive the Black–Scholes formula in
continuous time. The change of measure has a more immediate use in dynamic
portfolio selection discussed in Section 9.4. Applications of the law of iterated
expectations and the law of conditional constant of Chapter 8 are a recurring theme
in this chapter.

9.1 Discounted Asset Prices Are Martingales

9.1.1 Risk-Neutral Pricing Revisited

The plan of this section is to rederive the risk-neutral pricing formula of Sec-
tion 5.5 allowing for a fully general information structure and stochastic interest
rates. We saw in the previous chapter that a multi-period model is a collection
of simple one-period models, namely there are as many one-period models as
there are nodes in the information tree, excluding the last-period nodes. For ex-
ample, with three periods and two possible stock returns in each period we have
to consider 1 + 2 + 4 = 7 one-period models (see Figure 9.1). In the pres-
ence of a Markov structure some of these submodels may be identical, which
helps to reduce the number of computations, but in general each submodel will
be different.

In the absence of arbitrage every one-period model has a (perhaps not unique)
risk-neutral probability such that

Rf = EQ[Ri] for all i, (9.1)

where Ri is the return of asset i.
For the purposes of this chapter it is sufficient to examine the individual risky

assets in isolation; let us therefore consider one generic asset with return Rt and
price St .
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Stock price histories
uuu

uu
uud

u
udu

ud
udd

start
duu

du
dud

d
ddu

dd
ddd

t = 0 t = 1 t = 2 t = 3

Figure 9.1. Every multi-period model is composed of several one-period models.

• For simplicity we will assume that assets bear no dividends; therefore the
risky return between t and t + 1 is simply

Rt+1 = St+1

St

.

• Within the multi-period set-up we can capture the one-period pricing equa-
tion (9.1) by using the conditional expectation,

Rf t = EQ
t

[
St+1

St

]
, (9.2)

which in fact takes care of all one-period models in period t .
• The generic asset that we consider from now on can have different financial

interpretations; it can be a stock, an option on the stock, a long-dated zero
coupon bond, etc.

Recall from Chapter 8 the two important rules for manipulation of conditional
expectations.

Law of conditional constant:

Et [XY ] = XEt [Y ], if X is known at time t. (9.3)

Law of iterated expectations:

Es[Et [X]] = Es[X] for s � t. (9.4)

By virtue of (9.3) we can rephrase (9.2) as

St = EQ
t

[
St+1

Rf t

]
. (9.5)
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Starting from the final period (9.5) gives

ST−1 = EQ
T−1

[
ST

Rf T−1

]
, (9.6)

ST−2 = EQ
T−2

[
ST−1

Rf T−2

]
, (9.7)

...

S0 = EQ

[
S1

Rf 0

]
. (9.8)

Substituting (9.7) into (9.6) we have

ST−2 = EQ
T−2

[
1

Rf T−2
EQ
T−1

[
ST

Rf T−1

]]

= EQ
T−2

[
EQ
T−1

[
ST

Rf T−1Rf T−2

]]
using the fact that Rf T−2 is known at time T − 2 and therefore also at T − 1,
and therefore by virtue of (9.3) it can be moved inside the inner expectation. An
application of (9.4) yields

ST−2 = EQ
T−2

[
ST

Rf T−1Rf T−2

]
.

Performing the backward substitution procedure several times, we arrive at

St = EQ
t

[
ST

Rf T−1 · · ·Rf t

]
for t = 0, 1, . . . , T − 1. (9.9)

Denote by βt the compounded return on bank account deposits from time 0 to
time t ,

βt = Rf 0 · · ·Rf t−1,

β0 = 1,

then the risk-neutral valuation formula (9.9) can be written more compactly as

St

βt

= EQ
t

[
ST

βT

]
.

9.1.2 Discounted Asset Price Is a Martingale under Q

The stochastic process {Xt }t=0,...,T is a martingale under measure P if for all
s � t � T

Xs = Es[Xt ]. (9.10)

We have just shown that
St

βt

= EQ
t

[
ST

βT

]
(9.11)
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for all t . But this already implies that the process {St/βt }t=0,...,T is a martingale
under Q! Namely, it follows from (9.11) and (9.4) that

EQ
s

[
St

βt

]
= EQ

s

[
EQ
t

[
ST

βT

]]
= EQ

s

[
ST

βT

]
= Ss

βs

for all s � t .

For all traded assets without intermediate dividends the discounted price process
is a martingale under the risk-neutral measure.

At the moment one can think of this result as a mathematical curiosity; it will
become important later in continuous-time models.

9.1.3 Two Martingale Propositions

In the last two sections we have unwittingly discovered and proved two important
principles that will be exploited time and time again.

Proposition 9.1 (first martingale proposition). Let {Xt }t=0,1,...,T be a stochastic
process with the property,

Xt = Et [Xt+1] for t = 0, 1, . . . , T − 1. (9.12)

If E[XT ] < ∞ then the process {Xt }t=0,1,...,T is a martingale under measure P .

Proof. Use (9.12) iteratively and at the end apply the law of iterated expectations:

Xs = Es[Xs+1] = Es[Es+1[Xs+2]] = · · ·
= Es[Es+1[· · · Et−1[Xt ]]] = Es[Xt ].

Proposition 9.2 (second martingale proposition). Let Y be a fixed random vari-
able which is known at time T and assume that E[Y ] < ∞. Define a stochastic
process {Xt }t=0,1,...,T by setting

Xt = Et [Y ].
Then the process {Xt }t=0,1,...,T is a martingale under measure P , and XT = Y .

Proof. By the law of iterated expectations (9.4),

Es[Xt ] = Es[Et [Y ]] = Es[Y ] = Xs.

9.1.4 What Is a Martingale?

The martingale definition (9.10) does not provide much help and certainly it does
not tell us how a martingale is constructed. The best information one can get comes
from the first martingale proposition. We can rewrite (9.12) as

0 = Et [Xt+1 − Xt ],
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0.5 3
0.5 2

0.5 1
1

0.5 1
0.5 0

0.5 −1

t = 0 t = 1 t = 2

Figure 9.2. Example of a martingale. The process depicted in this figure is a martingale
under the probability measure generated by the conditional probabilities on the branches.

which means that the martingale is created by adding shocks with zero conditional
mean:

Xt = X0 + (X1 − X0)︸ ︷︷ ︸
1st shock

+ (X2 − X1)︸ ︷︷ ︸
2nd shock

+ · · · + (Xt − Xt−1)︸ ︷︷ ︸
t th shock

. (9.13)

As an example suppose that the shock values are ±1 with conditional probability 1
2

and that X0 = 1. The process X generated by (9.13) is depicted in Figure 9.2.

9.1.5 Wealth of a Self-Financing Trading Strategy Is a Martingale under Q

Now consider a self-financing strategy with cash value Vt and risky investment
(number of shares) θt ,

Vt+1 = Rf tVt + θtSt

(
St+1

St

− Rf t

)
︸ ︷︷ ︸

excess return

, (9.14)

and apply EQ
t [.] on both sides using (9.3),

EQ
t [Vt+1] = Rf tVt + θtSt EQ

t

[
St+1

St

− Rf t

]
︸ ︷︷ ︸

0

. (9.15)

From the definition of Q we have EQ
t [St+1/St − Rf t ] = 0 and after dividing both

sides of (9.15) by Rf t we obtain

Vt = EQ
t

[
Vt+1

Rf t

]
. (9.16)

Now divide both sides of (9.16) by βt using (9.3) on the right-hand side to obtain

Vt

βt

= EQ
t

[
Vt+1

βt+1

]
. (9.17)

Since (9.17) holds for all t , by virtue of the first martingale proposition the dis-
counted wealth of any self-financing strategy is a martingale under Q; in particular,
we have

Vt

βt

= EQ
t

[
VT

βT

]
for all t. (9.18)



192 9. Martingales and Change of Measure in Finance

Intuitively, the value of a self-financing strategy is very much like the value of
an asset without dividends because one is not allowed to add or withdraw any
cash in the intermediate periods. That is why equation (9.18) is identical in form
to equation (9.11). Property (9.18) will be instrumental in proving the dynamic
arbitrage theorem.

9.2 Dynamic Arbitrage Theorem

Definition 9.3. We say that there is type I dynamic arbitrage if one can find a self-
financing strategy with initial value V0 � 0 and terminal value VT � 0, such that
VT > 0 with positive probability. Type II dynamic arbitrage is a self-financing
trading strategy with V0 < 0 and VT = 0.

Theorem 9.4. Assume that securities pay no dividends and that Rf t > 0 in all states
for all t . In a model with a finite number of states there is no dynamic arbitrage if
and only if there is a strictly positive probability measure Q such that the discounted
price process of all securities is a martingale under Q. Equivalently, a multi-period
model is arbitrage-free if and only if each constituent one-period model is arbitrage-
free.

Proof. First the easy part. If there is no dynamic arbitrage, then there cannot be a
one-period arbitrage in the model, because such one-period opportunity could be
exploited dynamically by waiting until the one-period arbitrage comes up (this will
happen with positive probability) and then executing the one-period arbitrage trade
and investing the proceeds in the risk-free account. This is equivalent to saying that
without dynamic arbitrage all the one-step conditional probabilities must be strictly
positive. But if all-conditional risk-neutral probabilities are strictly positive, then
the unconditional measure Q, being a product of conditional probabilities, is strictly
positive and by the construction described in Sections 9.1.1 and 9.1.2, discounted
stock prices are martingales under Q.

The proof in the opposite direction is harder. Suppose we are given a strictly pos-
itive measure Q under which {St/βt }t=0,...,T is a martingale. Suppose there is type I
dynamic arbitrage, a self-financing strategy with V0 � 0 and VT > 0, then we also
have VT /βT > 0 with positive probability. Since Q is strictly positive we must have
EQ[VT /βT ] > 0 � V0. However, the last inequality contradicts the martingale con-
dition (9.18). Suppose there is type II arbitrage, then EQ[VT /βT ] = 0 > V0, which
again contradicts the martingale condition (9.18). Equivalently, the absence of one-
period arbitrage opportunities implies the existence of strictly positive conditional
risk-neutral probabilities under which Rf t = EQ

t [St+1/St ] for all t . However, this
already implies that Q is strictly positive and that {St/βt }t=0,...,T is a Q-martingale;
and we have just shown that these two facts guarantee no dynamic arbitrage.

The measureQ is called the equivalent martingale measure. In the present context
‘equivalent’ means that Q assigns positive probability to all states with positive P

probability and vice versa. There are situations of practical importance when a
particular measure Q may not be equivalent to P (see Section 12.2.4).
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Stock price and safe bank rate
4

2 0.15

2

1 0.10

2

1 0.20

1

t = 0 t = 1 t = 2

Figure 9.3. Two-period model for stock prices and risk-free investment.
Stock prices are at the nodes, the risk-free rate is between the branches.

9.3 Change of Measure

In finance one works with two sets of probability measures, objective P and risk-
neutral Q. The objective probabilities determine how likely a particular state of
the market is ex ante, whereas the risk-neutral probabilities, being related to state
prices, tell us how expensive it is to buy wealth ex ante for that particular state. The
ratio of the two probability measures

risk-neutral probability

objective probability

is called the change of measure.
If the change of measure is high in a particular scenario, then either the wealth

in this scenario is very expensive or this scenario is highly unlikely to occur; in
both cases it means one will not want to buy too much wealth for that scenario.
Since one is buying the wealth ex ante, before the state of the market is revealed, the
wealth acts as an insurance against poverty in that state. We can therefore think of
states with a high change of measure as uninsurable. Conversely, states with a low
change of measure are relatively cheap to insure against. This trade-off is discussed
in Section 9.4 on dynamic optimal portfolio selection in complete markets.

9.3.1 One-Step Conditional Change of Measure

To visualize the definition of the change of measure let us consider a two-period
model with IID stock returns,

Ru = 2 with probability 0.5,

Rd = 1 with probability 0.5.

The risk-free rate is initially r0 = 10%, if the stock price goes up it increases to
r1(u) = 15% and if the stock price goes down it increases to r1(d) = 20%. The
stock price and the risk-free rate are captured in Figure 9.3.

Recall that in this simple model the risk-neutral probabilities are given by

qu = Rf − Rd

Ru − Rd
= Rf − 1 = r,
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0.15 uu
0.1 u

0.85 ud

0.2 du
0.9 d

0.8 dd

0.5 uu
0.5 u

0.5 ud

0.5 du
0.5 d

0.5 dd

Risk-neutral probabilities

Objective probabilities

t = 0 t = 1 t = 2

Figure 9.4. Conditional objective and risk-neutral
probabilities of movement in the information tree.

and note that r is changing from node to node. The conditional risk-neutral and
objective probabilities are depicted in Figure 9.4

Let us denote the conditional one-step risk-neutral density at time t by

qt+1|t

and the conditional one-step objective density at time t by

pt+1|t .

Then we define the one-step conditional change of measure as the ratio of risk-
neutral and objective probabilities,

mt+1|t := qt+1|t
pt+1|t

.

Example 9.5. In the two-period tree of Figure 9.4:

q2|1(uu) = 0.15, p2|1(uu) = 0.5,

q2|1(ud) = 0.85, p2|1(ud) = 0.5,

q2|1(du) = 0.2, p2|1(du) = 0.5,

q2|1(dd) = 0.8, p2|1(dd) = 0.5,

m2|1(uu) = 0.15

0.5
= 0.3, (9.19)

m2|1(ud) = 0.85

0.5
= 1.7, (9.20)
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0.15 uu
0.1 u

0.85 ud

0.2 du
0.9 d

0.8 dd

Risk-neutral probabilities

t = 0 t = 1 t = 2

Figure 9.5. Illustration of the multiplication rule for conditional probabilities.

m2|1(du) = 0.2

0.5
= 0.4, (9.21)

m2|1(dd) = 0.8

0.5
= 1.6, (9.22)

q1|0(u) = 0.1, p1|0(u) = 0.5,

q1|0(d) = 0.9, p1|0(d) = 0.5,

m1|0(u) = 0.1

0.5
= 0.2, (9.23)

m1|0(d) = 0.9

0.5
= 1.8. (9.24)

• For any random variable X known at t + 1 we have identically

EQ
t [X] = Et

[
qt+1|t
pt+1|t

X

]
= Et [mt+1|tX]. (9.25)

• In particular,
Et [mt+1|t ] = 1 for all t (9.26)

by applying (9.25) with X = 1 and realizing that EQ
t [1] = 1.

9.3.2 Unconditional Change of Measure

Multiplication rule for conditional probabilities. The ex ante probability of
following a particular path in the decision tree equals the product of conditional
probabilities on the branches belonging to that path. This is a simple consequence
of the definition of conditional probability discussed in Appendix B.

Example 9.6. The risk-neutral probability at t = 0 of following the path down–up
is 0.9 × 0.2 = 0.18 (see Figure 9.5).



196 9. Martingales and Change of Measure in Finance

As a consequence of the multiplication rule for conditional probabilities the un-
conditional densitiespT |0, qT |0 (that is, densities that define the probability measures
P and Q) satisfy

pT |0 = p1|0 · · ·pT−1|T−2pT |T−1,

qT |0 = q1|0 · · · qT−1|T−2qT |T−1.

The unconditional change of measure is naturally defined as qT |0/pT |0:

mT = qT |0
pT |0

= qT |T−1qT−1|T−2 · · · q1|0
pT |T−1pT−1|T−2 · · ·p1|0

= mT |T−1mT−1|T−2 · · ·m1|0. (9.27)

Symbolically, we write

mT = dQ

dP
;

mathematicians call dQ/dP the Radon–Nikodym derivative of the measure Q with
respect to the measure P . In a discrete model with a finite number of states, the
change of measure dQ/dP is always well defined because we only consider states
with positive P probability, which means that the denominator in (9.27) is always
different from 0.

Example 9.7. We will find the unconditional change of measure for the information
tree in Figure 9.4. First, we first need to evaluate the unconditional path probabilities
from the multiplication rule

p2|0(uu) = p1|0(u)p2|1(uu) = 0.5 × 0.5 = 0.25,

p2|0(ud) = p1|0(u)p2|1(ud) = 0.5 × 0.5 = 0.25,

p2|0(du) = p1|0(d)p2|1(du) = 0.5 × 0.5 = 0.25,

p2|0(dd) = p1|0(d)p2|1(dd) = 0.5 × 0.5 = 0.25,

q2|0(uu) = q1|0(u)q2|1(uu) = 0.1 × 0.15 = 0.015,

q2|0(ud) = q1|0(u)q2|1(ud) = 0.1 × 0.85 = 0.085,

q2|0(du) = q1|0(d)q2|1(du) = 0.9 × 0.2 = 0.18,

q2|0(dd) = q1|0(d)q2|1(dd) = 0.9 × 0.8 = 0.72,

which then yields

m2(uu) = q2|0(uu)

p2|0(uu)
= 0.015

0.25
= 0.06,

m2(ud) = q2|0(ud)

p2|0(ud)
= 0.085

0.25
= 0.34,

m2(du) = q2|0(du)

p2|0(du)
= 0.18

0.25
= 0.72,

m2(dd) = q2|0(dd)

p2|0(dd)
= 0.72

0.25
= 2.88.
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Alternatively, we can perform the calculation using the precomputed one-period
changes of measure in (9.19)–(9.24):

m2(uu) = m1|0(u)m2|1(uu) = 0.2 × 0.3 = 0.06,

m2(ud) = m1|0(u)m2|1(ud) = 0.2 × 1.7 = 0.34,

m2(du) = m1|0(d)m2|1(du) = 1.8 × 0.4 = 0.72,

m2(dd) = m1|0(d)m2|1(dd) = 1.8 × 1.6 = 2.88.

9.3.3 Density Process of the Change of Measure and Conditional Expectations

Often we are interested in paths running between two intermediate times s < t ,
and not the entire length from 0 to T . For this purpose we will define the so-called
density process of the change of measure to give us the change of measure from
time 0 to time t :

mt := m1|0 · · ·mt |t−1. (9.28)

Now if we wish to evaluate the change of measure between times s < t , we can
take mt and deselect the probabilities belonging to time interval [0, s] by dividing
through ms ,

mt |s = ms+1|s · · ·mt |t−1 = mt

ms

. (9.29)

The first equality always works, but the second equality in (9.29) only makes sense if
ms �= 0. The case ms = 0 can only occur on paths on which at least one branch has
zero conditional Q probability, which then means that measure Q is not equivalent
to P . It is in this context that equivalence of measures becomes important.

At this point we can generalize the change-of-measure formulae (9.25) and (9.26)
to any time interval and obtain two important results that will play a crucial role in
the continuous-time models of Chapter 11.

• For s < t and any random variable Y known at time t we have identically

EQ
s [Y ] = Es

[
qt |s
pt |s

Y

]
= Es[mt |sY ]. (9.30)

• In particular, (9.30) with Y = 1 yields

Es[mt |s] = 1 for all s < t. (9.31)

Proposition 9.8 (third martingale proposition). Let {Xt }t=0,1,...,T be a process
adapted to the given information filtration and supposemt defined in (9.28) is strictly
positive for all t . Then {Xt }t=0,1,...,T is a martingale under measure Q if and only
if {mtXt }t=0,1,...,T is a martingale under measure P .

Proof. Since the processX is adapted the random variable Xt must be known at time
t . Substitute (9.29) into (9.30) with Y = Xt to obtain EQ

s [Xt ] = Es[mtXt/ms].
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By construction ms is known at time s; we can therefore take ms in front of the
conditional expectation. Multiplying both sides by ms we finally obtain

msE
Q
s [Xt ] = Es[mtXt ] for all s < t. (9.32)

IfX is a martingale underQ, then EQ
s [Xt ] = Xs and formula (9.32) impliesmsXs =

Es[mtXt ] for all s < t , which means mX is a martingale under P . Conversely, if
mX is a martingale under P , then Es[mtXt ] = msXs and formula (9.32) implies
msE

Q
s [Xt ] = msXs and since ms > 0 we have EQ

s [Xt ] = Xs for all s < t , meaning
X is a martingale under Q.

Proposition 9.9 (fourth martingale proposition). Suppose that mt defined in
(9.28) is strictly positive for all t . Then the density process {mt }t=0,1,...,T is a
martingale under measure P .

Proof. Let us take Xt = 1 for all t . Then Xt is a martingale under any probability
measure, and specifically under Q. By virtue of the third martingale proposition,
mt must be a martingale under P .

9.4 Dynamic Optimal Portfolio Selection in a Complete Market

This section shows that the change of measure plays an important role in optimal
portfolio allocation problems.

9.4.1 Problem Formulation

An investor with initial wealth V0 = £10 wishes to invest her wealth for two periods
without adding or withdrawing money along the way. The investor’s trade-off
between the risk and return is captured by a CRRA utility with the coefficient of
relative risk aversion γ = 5. Suppose that the only assets available are stock and a
risk-free bank account depicted in Figure 9.3.

Let us visualize the evolution of an investor’s wealth. If the investor buys θ0
stocks at t = 0, then from the self-financing condition (9.14) her wealth at t = 1
will be either

V1(u) = 10 × 1.1 + θ0S0(2 − 1.1) (9.33)

or

V1(d) = 10 × 1.1 + θ0S0(1 − 1.1). (9.34)

If the investor receives a high return in the first period, then in the second period she
will have either

V2(uu) = V1(u) × 1.15 + θ1(u)S1(u)(2 − 1.15) (9.35)

or

V2(ud) = V1(u) × 1.15 + θ1(u)S1(u)(1 − 1.15), (9.36)

but if the first period return is low, then the second period wealth will be either

V2(du) = V1(d) × 1.2 + θ1(d)S1(d)(2 − 1.2) (9.37)
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or

V2(dd) = V1(u) × 1.2 + θ1(d)S1(d)(1 − 1.2). (9.38)

After substitution of (9.33) and (9.34) into (9.35)–(9.38) we obtain the terminal
wealth as a function of the trading strategy θ0, θ1:

V2(uu) = 12.65 + 1.035θ0 + 1.7θ1(u),

V2(ud) = 12.65 + 1.035θ0 − 0.3θ1(u),

V2(du) = 13.2 − 0.12θ0 + 0.8θ1(d),

V2(dd) = 13.2 − 0.125θ0 − 0.2θ1(d).

The investor’s task is to find numbers θ0, θ1(u) and θ1(d) which maximize the
expected utility of the terminal wealth:

E

[
V

1−γ
2

1 − γ

]
.

Mathematically, we write this problem down as follows:

max
θ0,θ1

E

[
V

1−γ
2

1 − γ

]
; (9.39)

it is understood in (9.39) that θt is chosen separately for each stock price history at
time t , that is, in our particular model θ1 represents two numbers, θ1(u) and θ1(d).

9.4.2 Change of Control Variables and Budget Constraint

In practice, (9.39) is the most useful formulation and one can work out the optimal
values of θ1, θ0 recursively by a procedure known as dynamic programming. But
since the principle of dynamic programming takes a while to explain, we will defer
its discussion to Section 13.4.3. Here we will instead concentrate on the much
simpler martingale duality method, which sidesteps the need to compute θ0, θ1 by
finding directly the optimal values of V2(uu), V2(ud), V2(du) and V2(dd).

Instead of looking for the number of shares θt in each period, it makes things
much simpler to realize that in a complete market any distribution of wealth can be
generated if one has enough cash at t = 0. How much cash is needed to finance a
given distribution of wealth? We know that each cash flow has a unique no-arbitrage
price, the no-arbitrage price of VT is simply EQ[VT /βT ]. We can choose VT freely
in each state but the distribution of wealth must satisfy the budget constraint,

V0︸︷︷︸
initial wealth

= EQ

[
VT

βT

]
︸ ︷︷ ︸

no-arbitrage value
of terminal wealth

. (9.40)

In our model, (9.40) translates into

10 = 0.1 × 0.15 × V2(uu) + 0.1 × 0.85 × V2(ud)

1.1 × 1.15

+ 0.9 × 0.2 × V2(du) + 0.9 × 0.8 × V2(dd)

1.1 × 1.2
.
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Thus the optimal utility problem (9.39) can be rephrased equivalently as

max
V2

E

[
V

1−γ
2

1 − γ

]
(9.41)

subject to

V0 = EQ

[
V2

Rf 1Rf 2

]
. (9.42)

All this crucially relies on the fact that the market is dynamically complete and
therefore every cash flow that only depends on stock price history (in our case the
cash flow is V2) can be perfectly replicated using a dynamic self-financing strategy.

9.4.3 Constrained Maximization and Lagrange Multiplier

In this paragraph we will solve the utility maximization (9.41) and (9.42). Let us
write (9.41) and (9.42) down explicitly:

max
V2(uu),V2(ud),V2(du),V2(dd)

1

4

(
V

1−γ
2 (uu)

1 − γ
+ V

1−γ
2 (ud)

1 − γ
+ V

1−γ
2 (du)

1 − γ
+ V

1−γ
2 (dd)

1 − γ

)
︸ ︷︷ ︸

objective function

(9.43)

subject to

0.015V2(uu) + 0.085V2(ud)

1.1 × 1.15
+ 0.18V2(du) + 0.72V2(dd)

1.1 × 1.2
− 10 = 0︸ ︷︷ ︸

constraint

. (9.44)

We will take for granted that the constrained maximization (9.43) and (9.44) is
solved by forming the so-called Lagrangian function,

Lagrangian = objective function − Lagrange multiplier × constraint,

in our case

L = 1

4

(
V

1−γ
2 (uu)

1 − γ
+ V

1−γ
2 (ud)

1 − γ
+ V

1−γ
2 (du)

1 − γ
+ V

1−γ
2 (dd)

1 − γ

)

− λ

(
0.015V2(uu) + 0.085V2(ud)

1.1 × 1.15
+ 0.18V2(du) + 0.72V2(dd)

1.1 × 1.2
− 10

)
,

and solving the unconstrained optimization

max
V2(uu),V2(ud),V2(du),V2(dd)

L. (9.45)

The value of the Lagrange multiplier λ must be such that the budget constraint
(9.44) holds. Why the Lagrangian works for constrained optimization is explained
in Appendix A.
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The first-order conditions of the maximization in (9.45) read

0 = ∂L

∂V2(uu)
= 0.25V −γ

2 (uu) − λ
0.015

1.1 × 1.15
,

0 = ∂L

∂V2(ud)
= 0.25V −γ

2 (ud) − λ
0.085

1.1 × 1.15
,

0 = ∂L

∂V2(ud)
= 0.25V −γ

2 (du) − λ
0.18

1.1 × 1.2
,

0 = ∂L

∂V2(ud)
= 0.25V −γ

2 (dd) − λ
0.72

1.1 × 1.2
.

Solving for V −γ
2 we find

V
−γ
2 (uu) = λ

0.06

1.1 × 1.15
, (9.46)

V
−γ
2 (ud) = λ

0.34

1.1 × 1.15
, (9.47)

V
−γ
2 (du) = λ

0.72

1.1 × 1.2
, (9.48)

V
−γ
2 (dd) = λ

2.88

1.1 × 1.2
. (9.49)

• On the left-hand side of (9.46)–(9.49) we have the marginal utility, whereas
on the right-hand side we have the unconditional change of measure dis-
counted at the risk-free rate and multiplied by λ.

• This result is not specific to our model, but it is valid generally in the sense
that the optimal value of VT in

max
VT

E[U(VT )] s.t. V0 = EQ

[
VT

βT

]
satisfies

U ′(VT ) = λ
mT

βT

,

where mT is the ratio of the unconditional risk-neutral probability to the
unconditional objective probability on each path in the information tree.

• The ratio mT /βT is called the stochastic discount factor, the pricing kernel
or the state-price density.

The next step is to solve (9.46)–(9.49) for V2 with γ = 5:

V2(uu) = λ−1/5
(

0.06

1.1 × 1.15

)−1/5

= 1.8399λ−1/5, (9.50)

V2(ud) = λ−1/5
(

0.34

1.1 × 1.15

)−1/5

= 1.3005λ−1/5, (9.51)
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V2(du) = λ−1/5
(

0.72

1.1 × 1.2

)−1/5

= 1.1289λ−1/5, (9.52)

V2(dd) = λ−1/5
(

2.88

1.1 × 1.2

)−1/5

= 0.8555λ−1/5. (9.53)

We can see that the investor wishes to hold most wealth in the state with the lowest
change of measure; this makes sense since m/β = (q/p)/β will be small in the
states which are likely to occur (p relatively large) and where wealth is cheap to
buy (the state price q/β relatively small).

In the final step we will recover the appropriate value of λ−1/5 by plugging
(9.50)–(9.53) into the budget constraint (9.44),

10 = λ−1/5
(

0.015 × 1.8399 + 0.085 × 1.3005

1.1 × 1.15

+ 0.18 × 1.1289 + 0.72 × 0.8555

1.1 × 1.2

)
,

which yields
λ−1/5 = 13.7028. (9.54)

Now substitute λ−1/5 into (9.50)–(9.53) and obtain values of the optimal terminal
wealth:

V2(uu) = 25.21, (9.55)

V2(ud) = 17.82, (9.56)

V2(du) = 15.47, (9.57)

V2(dd) = 11.72. (9.58)

9.4.4 Optimal Trading Strategy and State Variables

Once we know the optimal terminal wealth it is very easy to work out the trading
strategy that generates it using formulae (5.9)–(5.11). For example, in the high node
at time t = 1 we have

θ1(u) = V2(uu) − V2(ud)

S2(uu) − S2(ud)
= 25.21 − 17.82

4 − 2
= 3.695, (9.59)

V1(u) = q2|1(uu)V2(uu) + q2|1(ud)V2(ud)

Rf 1(u)

= 0.15 × 25.21 + 0.85 × 17.82

1.15
= 16.46, (9.60)

bank1(u) = V1(u) − θ1(u)S1(u) = 16.46 − 2 × 3.695 = 9.07. (9.61)

The entire optimal investment strategy is captured in Figure 9.6. If our calculations
are correct, we must get V0 = 10 in the end.

The procedure (9.59)–(9.61) is very similar to option pricing of Chapter 5 but there
is one important difference here in terms of state variables. While European call
option prices in the model of Figure 9.3 would only depend on the stock price at any
given time, we can see that the optimal wealth in the same model is path dependent,



9.4. Dynamic Optimal Portfolio Selection in a Complete Market 203

Stock price and safe bank rate Optimal wealth
4 25.21

2 0.15 16.46
2 17.82

1 0.10 10.00
2 15.47

1 0.20 10.39
1 11.72

Bank account Number of shares
25.21 0.00

9.07 3.70
17.82 0.00

3.93 6.07
15.47 0.00

6.65 3.75
11.72 0.00

t = 0 t = 1 t = 3 t = 0 t = 1 t = 3

Figure 9.6. Optimal dynamic investment strategy.

that is, V2(ud) �= V2(du)! This is a typical situation in optimal investment problems;
the optimal solution requires an additional state variable, which is the wealth itself.
As long as the stock price is a Markov process under P , and the safe interest rate
depends only on the current stock price and time, we will find that the optimal
trading strategy θt is a function of St and Vt ; fortunately, no more information is
required.

9.4.5 Martingale Duality Method on Few Lines

Once the reader is comfortable with the natural calculations (9.43)–(9.61), he or she
may be interested in solving the utility maximization symbolically. The symbolic
solution is much faster since the numerical values can be entered at the very end
and do not have to be carried through the whole calculation.

We start from

max
VT (ω),ω∈Ω E

[
V

1−γ

T

1 − γ

]
(9.62)

s.t. E

[
mT

VT

βT

]
= V0, (9.63)

where we have for convenience put EQ[VT /βT ] = E[mT VT /βT ] by virtue of (9.30).
Since there is just one linear constraint, one solves (9.62) and (9.63) using uncon-
strained maximization over all states ω ∈ Ω with a Lagrange multiplier:

L = E

[
V

1−γ

T

1 − γ

]
− λ

(
E

[
mT

VT

βT

]
− V0

)

=
∑
ω

pT |0(ω)

(
V

1−γ

T (ω)

1 − γ
− λmT (ω)

VT (ω)

βT (ω)

)
+ λV0.
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The first-order conditions read

∂L

∂VT (ω)
= pT |0(ω)

(
V

−γ

T (ω) − λ
mT (ω)

βT (ω)

)
= 0,

VT = λ−1/γ
(
mT

βT

)−1/γ

. (9.64)

The self-financing condition (9.63) implies

V0 = E

[
mT

βT

VT

]
= E

[
mT

βT

(
λ
mT

βT

)−1/γ ]

= λ−1/γ E

[(
mT

βT

)1−1/γ ]
,

whereby we obtain

λ−1/γ = V0

E[(mT /βT )1−1/γ ] . (9.65)

Plugging this value back into the optimal wealth equation (9.64) we have

VT = V0

E[(mT /βT )1−1/γ ]
(
mT

βT

)−1/γ

. (9.66)

Example 9.10. Find the optimal wealth level for a CRRA investor with γ = 5,
V0 = 10 with the stock price and short rate from Figure 9.3.

Recall from Example 9.7 on p. 196 that the change of measure is

m2(uu) = 0.06,

m2(ud) = 0.34,

m2(du) = 0.72,

m2(dd) = 2.88.

For the cumulative discount we have β2 = (1 + r0)(1 + r1):

β2(uu) = β2(ud) = 1.1 × 1.15 = 1.265,

β2(du) = β2(dd) = 1.1 × 1.2 = 1.32.

Recall that the unconditional objective probabilities are the same for all paths and
are equal to 0.25. Therefore, from (9.65) we have

λ1/γ V0 = E

[(
mT

βT

)1−1/γ ]
= E

[(
mT

βT

)0.8]

= 0.25

((
0.06

1.265

)0.8

+
(

0.34

1.265

)0.8

+
(

0.72

1.32

)0.8

+
(

2.88

1.32

)0.8)
= 0.730
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and from (9.66) we obtain optimal wealth in the final period:

VT (uu) = 10

0.730

(
0.06

1.265

)−0.2

= 25.20,

VT (ud) = 10

0.730

(
0.34

1.265

)−0.2

= 17.82,

VT (du) = 10

0.730

(
0.72

1.32

)−0.2

= 15.46,

VT (dd) = 10

0.730

(
2.88

1.32

)−0.2

= 11.72.

This solution is implemented in an Excel spreadsheet chapter9sect4.xls.

9.4.6 Measuring Investment Potential in a Dynamically Complete Market

With the expression for optimal wealth (9.66) it is easy to work out the investment
potential of dynamic trading. First we will calculate the certainty equivalent, using
the notation of Chapter 3:

CE = (E[V 1−γ

T ])1/(1−γ )

= V0

E[(mT /βT )1−1/γ ]
(

E

[(
mT

βT

)−(1−γ )/γ ])1/(1−γ )

= V0

(
E

[(
mT

βT

)1−1/γ ])γ /(1−γ )

. (9.67)

The safe wealth depends on how much it costs at time 0 to buy one unit of wealth
in each state at time T . From the arbitrage pricing formula the cost is

EQ

[
1

βT

]
= E

[
mT

βT

]
. (9.68)

In financial terminology (9.68) represents the price of a zero coupon discount bond.
Hence if we invest V0 into the discount bond with maturity T , we will have in the
terminal period

v = V0

E[mT /βT ] . (9.69)

Combining (9.67) and (9.69) with the definition of investment potential (3.22) we
have

IPγ = γ

(
CE

v
− 1

)
= γ

(
E

[
mT

βT

](
E

[(
mT

βT

)1−1/γ ])γ /(1−γ )

− 1

)
. (9.70)

For γ = −1 we can rephrase this result in terms of the Sharpe ratio to obtain
the well-known Hansen–Jagganathan duality formula, which links the maximum
market Sharpe ratio to the Sharpe ratio of the pricing kernel:

SR2(market) = (1 − IP−1)
−2 − 1 = 1

SR2(mT /βT )
. (9.71)
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The duality between market investment opportunities and state prices is impor-
tant for econometric testing of asset-pricing models where m is typically linked
to observed financial behaviour of households via an optimizing model; see the
references at the end of the chapter.

9.5 Summary

• We have defined a cumulative return on the bank account deposits βt :

βt = Rf 0 × Rf 1 × · · · × Rf t−1,

β0 = 1.

• A process {Xt }t∈[0,T ] is a martingale if (i) Es[Xt ] = Xs for all s < t and
(ii) E[|Xt |] is finite for all t . When we talk about martingales in this book we
look for property (i) and assume that (ii) is satisfied automatically. In contrast,
a mathematical treatment of martingales would place a strong emphasis on
the verification of condition (ii), which happens to be a much harder task.
Fortunately for us, (ii) is indeed satisfied in frequently encountered models
of financial markets which ex post justifies us in not giving it much attention
in this text.

• Intuitively, a martingale is a process created by adding shocks with zero
conditional mean. Mathematically, this statement is captured by the first
martingale proposition.

• When an asset bears no dividends the one-period pricing formula reads

St = EQ
t

[
St+1

Rf t

]
.

Dividing both sides by βt we have

St

βt

= EQ
t

[
St+1

βt+1

]
for all t

and the first martingale proposition then implies that the discounted price
process {St/βt } is a martingale under the risk-neutral measure:

Ss

βs

= EQ
s

[
St

βt

]
for any s < t.

By taking t = T and s = 0 we obtain the risk-neutral pricing formula used
in option pricing.

• The wealth of a self-financing strategy behaves exactly like an asset without
dividends, since one is not allowed to add or withdraw money at intermediate
dates:

Vs

βs

= EQ
s

[
Vt

βt

]
for any s < t.

This property is instrumental in proving the multi-period version of the arbi-
trage theorem: there is no dynamic arbitrage if and only if there is a strictly
positive probability measureQ under which the discounted prices of all traded
assets are martingales (assuming that assets pay no dividend).
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• In finance one uses two sets of probability measures, objective P and risk-
neutralQ. Objective probabilities measure the likelihood of individual market
scenarios; the risk-neutral probabilities discounted at the safe rate tell us how
expensive it is to buy a contract which delivers one unit of wealth at the
terminal date when a particular market scenario occurs.

• The ratio of risk-neutral to objective probabilities is called the change of
measure. Scenarios with a low change of measure are easy to ensure against,
whereas the scenarios with a very high change of measure are uninsurable.

• The change of measure on paths starting at time s and ending at time t is
denoted by mt |s , with the exception of mt |0, which is denoted simply by mt .
For any random variable X known at t we have by definition

EQ
s [X] = Es[mt |sX] (9.72)

and in particular
1 = Es[mt |s]. (9.73)

• From the multiplication rule for conditional probabilities the unconditional
change of measure is the product of one-step changes of measure,

mt |s = ms+1|s × ms+2|s+1 × · · · × mt |t−1.

To capture mt |s it is convenient to define density process {mt }t=0,1,...,T :

mt = m1|0 × · · · × mt−1|t−2 × mt |t−1,

m0 = 1.

By direct comparison

mt |s = mt

ms

. (9.74)

• Property (9.73) together with (9.74) implies that the process {mt }t=0,1,...,T is
a martingale under P .

• Property (9.72) together with (9.74) implies that the process {Xt }t=0,1,...,T is
a martingale under Q if and only if {mtXt }t=0,1,...,T is a martingale under
P . This characterization becomes useful in the continuous-time limit when
dealing with Itô processes.

• Let Vt be the wealth of a self-financing trading strategy with a number of
shares θt . The dynamic optimal investment problem

max
θt ,t=0,1,...,T−1

E[U(VT )]
with θt known at time t can be rephrased equivalently as a constrained opti-
mization over terminal wealth with one linear constraint,

max
VT (ω),ω∈Ω E[U(VT )] (9.75)

s.t. EQ

[
VT

βT

]
= V0. (9.76)



208 9. Martingales and Change of Measure in Finance

0.5 10.816
0.5 10.4

0.5 10.192
10

0.5 10.192
0.5 9.8

0.5 9.604

t = 0 t = 1 t = 2

Figure 9.7. Stock price histories and conditional objective probabilities.

The marginal utility at optimum is proportional to the unconditional state
price density mT /βT ,

U ′(VT ) = λ
mT

βT

.

Other commonly used expressions for mT /βT are the pricing kernel and the
stochastic discount factor.

• The optimal investment problem typically requires one more state variable,
wealth, compared with the corresponding option pricing problem. Thus even
though the stock price tree may recombine to form a lattice, it is typically not
possible to write the optimal wealth into this lattice.

9.6 Notes

Sections 9.1–9.3 are an elaboration of Chapter 2G in Duffie (1996). The same
material is explained very well in Chapter 2 of Baxter and Rennie (1996). The
martingale duality approach to dynamic optimal investment and consumption prob-
lems was pioneered by Pliska (1986) and developed by Cox and Huang (1989)
and Karatzas et al. (1991). The relationship between the variance of the pricing
kernel and the market Sharpe ratio appears in Hansen and Jagannathan (1991); for
extensions thereof see Černý (2003). For a comprehensive survey of asset pricing
that uses pricing kernels as the main tool, see Cochrane (2001). This book ignores
the questions of integrability which are central to the proper mathematical use of
martingales. Interested reader can learn the technical background from Williams
(1991). Lack of uniform integrability is resolved by introducing the notion of local
martingale; see Hunt and Kennedy (2000).

9.7 Exercises

Exercise 9.1 (martingale properties). Decide whether each of the following four
statements is true or false.

The process {Xt }t=0,1,...,T is a martingale if

(a) for all 0 � s � t � T , Es[Xt ] = Xs ,
(b) for all 0 � t � T , Et [XT ] = Xt ,
(c) for all 0 � t � T − 1, Et [Xt+1] = Xt ,
(d) for all 0 � t � T , E[Xt ] = X0.
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Stock price Optimal wealth
10.816

10.4
10.192

10 1000
10.192

9.8
9.604

Bank account Number of shares

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

Figure 9.8. Description of the optimal investment strategy.

Exercise 9.2 (dynamic investment with logarithmic utility). Consider the model
of Exercise 5.1: the monthly risk-free rate is 0.5%, the monthly stock return can
take two values, Ru = 1.04, Rd = 0.98, with equal probability and monthly stock
returns are independent. Assume that the initial stock price is S0 = £10. The stock
price model is depicted in Figure 9.7.

Suppose that an investor starts with £1000 and wishes to invest this sum for two
months. Her criterion is to maximize the expected log-utility of her wealth in two
months’ time.

(a) The coefficient of relative risk aversion is defined as

−VU ′′(V )

U ′(V )
.

Is an investor with U(V ) = ln V more or less risk averse than an investor
with U(V ) = √

V ? Circle one answer.

(i) Log investor more risk averse than square root investor.

(ii) Log investor less risk averse than square root investor.

(iii) Both equally risk averse.

(b) Find the unconditional change of measure in this model.

muu =
mud =
mdu =
mdd =

(c) Using the change of measure write down the budget constraint that our investor
faces.

£1000 =
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Figure 9.9. Information tree containing stock price histories and risk-free interest rate.

(d) Rewrite the constrained maximization as an unconstrained problem with a
Lagrange multiplier.

max
Vuu,Vud,Vdu,Vdd

(e) Solve the unconstrained problem with a Lagrange multiplier λ.

Vuu =
Vud =
Vdu =
Vdd =

(f) Find the correct value of λ from the budget constraint.

λ =
(g) Evaluate the optimal wealth in two months’ time for each path.

Vuu =
Vud =
Vdu =
Vdd =

(h) Find the self-financing portfolio that leads to the optimal wealth distribution.
In Figure 9.8 write down investor’s total wealth, the number of shares and the
cash in bank.

(i) If we take stock price and calendar time as the state variables, are these
variables sufficient to describe the optimal wealth of our investor?

Exercise 9.3 (dynamic investment with square root utility). Repeat the above
with U(V ) = √

V , and compare the optimal value of V2 with the result in Exer-
cise 9.2. Is your finding consistent with the ranking of risk aversion found in part (a)
of Exercise 9.2?

Exercise 9.4 (dynamic investment with exponential utility). Repeat the above
with U(V ) = −e−V .
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Figure 9.10. Specific consumption stream.

c2(uu)
c1(u) 0.05

c2(ud)
c0 0.05

c2(du)
c1(d) 0.05

c2(dd)

t = 0 t = 1 t = 2

Figure 9.11. General consumption stream.

Exercise 9.5 (dynamic investment with CRRA utility). For the two-period model
above, design an Excel spreadsheet that computes the optimal trading strategy for a
CRRA investor with arbitrary baseline risk aversion γ . Report also the investment
potential and the corresponding Sharpe ratio of the optimal investment strategy.

Exercise 9.6 (optimal intertemporal consumption). Consider a two-period model
with two assets: stock and a risk-free bank account. The one-period stock returns
are independent and identically distributed, and each can take two values, Ru = 1.2
or Rd = 1.0 with equal objective probability pu = pd = 1

2 . The risk-free rate is
constant, r = 0.05. The information tree with stock price and risk-free rate is
depicted in Figure 9.9.

(a) Write down the information tree with conditional risk-neutral probabilities
clearly depicted on the branches.

(b) Suppose a consumer chooses her consumption according to Figure 9.10. For
example, if the stock price goes up and then down the consumption is c0 =
500, c1 = 700, c2 = 700. Use the risk-neutral probabilities to work out
how much wealth the consumer needs at time 0 to finance this stream of
consumption.

(c) Suppose now that the consumption stream is unknown, as shown in Fig-
ure 9.11. Write down the budget constraint that the consumption stream must
satisfy so that it can be financed with initial wealth V0 = 1000.
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(d) The consumer has an initial wealth 1000 and wishes to maximize the expected
utility of consumption,

max
c0,c1,c2

E[ln c0 + ln c1 + ln c2],
subject to the budget constraint derived in (c). Formulate the problem as an
unconstrained optimization with a Lagrange multiplier λ and write down the
first-order conditions.

(e) Solve for the consumption as a function of λ, deduce λ from the budget
constraint, and enter the optimal value of consumption into the information
tree.
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Brownian Motion and Itô Formulae

In this chapter we will abandon the world with a finite number of states and discrete-
time periods to uncover the beauty of continuous-time finance. We briefly review
the construction of Brownian motion, which was the main topic of Chapter 6. The
construction naturally leads to the logarithm of the stock price being expressed
as a stochastic integral, which implies that the log stock price is an Itô process.
We will show how to transform one Itô process (logarithm of stock price) into
another (level of stock price) by means of the all-important Itô formula. We will
generalize the formula to the function of several Itô processes depending on several
independent Brownian motions. We will use these formulae to find the equation for
the discounted price process and to verify the solution for the Ornstein–Uhlenbeck
mean-reverting process. At the end of the chapter we will see under what conditions
an Itô process becomes a martingale. The tools developed in this chapter will allow
us to rederive the Black–Scholes formula in the next chapter using only continuous-
time mathematics.

10.1 Continuous-Time Brownian Motion

10.1.1 Discrete Random Walk

We will start with a collection of random variables ε1, ε2, . . . , εT interpreting εt
as a shock which is revealed at time t but not before. Furthermore, we require the
conditional mean of each shock to be zero and the conditional variance to be 1:

Et [εt+1] = 0, (10.1)

Vart (εt+1) = Et [ε2
t+1] = 1. (10.2)

Exercise 10.1 shows three important properties of the shocks εt .

• The mean of εt is 0 as of any earlier date s < t ,

Es[εt ] = 0. (10.3)

• The variance of εt is 1 as of any earlier date s < t ,

Vars(εt ) = 1. (10.4)

• The shocks εt , εu are automatically uncorrelated as of any earlier date
s < t < u,

Covs(εt , εu) = 0. (10.5)
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Figure 10.1. Realization of the process B1,t with T = 100.
The shocks εt are independent and take values ±1 with probability 50%.
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Figure 10.2. Another realization of the process B1,t .

The easiest (but not the only) way to construct shocks ε with properties (10.1)
and (10.2) is to assume that {εt } are IID (independent identically distributed).

Now consider a new process B1,t that adds up all the shocks up until the time t ,

B1,0 = 0,

B1,1 = ε1,

B1,2 = ε1 + ε2,

B1,T = ε1 + ε2 + · · · + εT .

The process B1,t is called a discrete-time random walk with time step 1. Figures 10.1
and 10.2 show two realizations of the Brownian motion where the shock values have
been taken from a quasi-random number generator in Excel (see Exercise 10.2).

We will notice the following facts about the process B1,t . By virtue of (10.1) and
of the first martingale proposition the process B1,t is a martingale. Furthermore,
since by virtue of (10.5) the shocks {εt } are uncorrelated, the unconditional variance
of B1,t equals the sum of unconditional variances of individual shocks, which by
virtue of (10.4) are all equal to 1,

Var(B1,t ) = Var(ε1 + · · · + εt ) = Var(ε1) + · · · + Var(εt ) = t. (10.6)
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For the conditional variance at time s similarly

Vars(B1,t ) = Vars(ε1 + · · · + εs︸ ︷︷ ︸
known at time s

+εs+1 + · · · + εt )

= Vars(εs+1 + · · · + εt ) (10.7)

= Vars(εs+1) + · · · + Vars(εt ) = t − s. (10.8)

We notice that the variance of the process B1,t increases linearly with time. This is
the same linear law for variance that has already appeared in Chapter 6. Also note
that the shocks ε do not have to be independent or identically distributed for (10.6)
and (10.8) to hold.

10.1.2 Refining the Time Step

We can repeat the same construction as above using an arbitrary time step �t ,
denoting the resulting random walk B�t,t ,

B�t,0 = 0,

B�t,�t = ε�t ,

B�t,2�t = ε�t + ε2�t ,

B�t,T = ε�t + ε2�t + · · · + εT−�t + εT .

In order to make sure that Var(B�t,t ) = t as before, the variance of the individual
shocks must be proportional to �t ,

Vart (εt+�t ) = �t, (10.9)

Et [εt+�t ] = 0. (10.10)

Example 10.1. With a time step �t = 1 we have used shocks of size ε1 = ±1.
If we now take a time step of �t = 1

16 = 0.0625, the shock size must drop by the
factor

√
�t = 1

4 . Namely, taking

ε�t = √
�tε1

and applying standard properties of mean and variance gives

E[ε�t ] = E[√�tε1] = √
�tE[ε1] = 0,

Var(ε�t ) = Var(
√
�tε1) = �t Var(ε1) = �t,

as required in (10.9) and (10.10). Therefore, with a time step of �t = 1
16 we would

use shocks of size ±0.25. One realization of the random walk B1/16,t is shown in
Figure 10.3.

As the time step gets smaller we are adding shocks more and more frequently
but the variance of the shocks gets smaller proportionally with their number. In the
limit �t → 0 as the size of the shocks goes to zero the process Bt is defined for all
values of t ∈ [0; T ] and we obtain continuous-time Brownian motion. A sufficient
but not necessary condition to obtain continuous Brownian motion is independence
of the ε shocks.
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Figure 10.3. Realization of discrete Brownian motion with time step 1
16 .

10.1.3 Continuous-Time Limit, Lévy Processes and Markov Chain
Approximations

We are about to leave the comforting world of discrete mathematics to discover the
exciting but rather abstract world of continuous stochastic processes. Before we do
so it may be useful to elucidate how these two worlds fit together.

• It is important to bear in mind that B�t,T converges to the continuous-time
value BT in terms of its distribution,

lim
�t→0

E[(BT − B�t,T )
2] = 0,

but not pathwise. For example, the discrete Brownian motion starting at
0 can cross zero on the interval [0, T ] no more than T/�t times, whereas
the continuous-time Brownian motion starting at zero crosses zero infinitely
many times in an arbitrarily short time interval after the start. Fortunately,
what matters in finance are mostly the distributional properties, which we
review in the next section.

• To obtain the Brownian motion limit it is absolutely crucial that the size of ε
shocks tends to zero (in an appropriate sense) as the time interval �t shrinks.
If the size of shocks did not go to zero, then the limit would be a Poisson jump
process, or more generally a combination of independent Poisson processes—
a Lévy process. The two different types of limits, Brownian and Poisson, were
examined in detail in Chapter 6.

• The mathematical theory describing the limits of discrete-time processes is
known under the name of Markov chain approximation method; see the ref-
erences at the end of the chapter. This theory essentially tells us that it is
OK to switch between the discrete and continuous-time versions of the same
problem, whether it concerns pricing, optimal investment, or indeed a range
of other problems in physics, operations research, etc. In practice, one can
pick the version that is more practical to solve in the given circumstances.
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The discrete version can always be solved by brute force on a computer; on
the other hand if a continuous-time solution exists, then it typically evaluates
much faster than the discretized model (think of the Black–Scholes formula
compared with the speed of the binomial option pricing model). As a rule,
the more realistic the model the smaller the chance that it will have a simple
closed-form continuous-time solution. The numerical solutions of discrete-
time models therefore offer a considerable degree of flexibility. In addition
computers are getting faster and models that were numerically impractical
20 years ago today have a new lease of life.

• So far, with the exception of Chapters 8 and 9, the book has been skewed
towards numerical modelling. It is now time to redress the balance and provide
tools for dealing with continuous-time models. To make our task easier we
will restrict our attention to Brownian motion; see the notes at the end of
the chapter for references dealing with Poisson jump processes. By its very
nature the continuous-time Brownian motion is a theoretical abstraction and
its manipulation therefore calls for theoretical tools. These tools, namely the
Itô integral and Itô calculus, are the main topic of the remainder of the chapter.

10.1.4 Properties of Continuous-Time Brownian Motion

Quite naturally, most of the properties of the continuous-time Brownian motion fol-
low from the properties of its discrete-time random walk counterpart. The only thing
that changes is the shape of the distribution, in the limit Brownian increments have
jointly normal distribution. It is as if all the shocks ε were distributed identically,
independently and normally from the start.

1. For any t1 � t2 � t3 the distribution ofBt3−Bt2 conditional on the information
at time t1 is normal with mean 0 and variance t3 − t2. Mathematically, we
write

Bt3 − Bt2 | Ft1 ∼ N(0, t3 − t2). (10.11)

2. For t1 < t2 � t3 < t4 the increments Bt2 − Bt1 and Bt4 − Bt3 are jointly
normal and uncorrelated, and therefore also independent.

3. The sample paths of Brownian motion are continuous, that is,

lim
s→t

Bs − Bt = 0

for almost all realizations of the process {Bt } and all times t .

4. The sample paths are not differentiable, that is,

lim
s→t

Bt − Bs

t − s

does not exist at any time t for almost all realizations of the process {Bt }.
The sample path properties rarely find application in finance, and they do not fea-

ture elsewhere in this book. On the other hand, property (10.11) is used extensively,
not least in the proof of the Itô formula.
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Brownian increments in continuous time. Consider a small time step dt and
denote the shock Bt+dt − Bt by dBt . Then

dBt ∼ N(0, dt),

Cov(dBt , dBs) = 0 for t �= s,

Cov(dBt , dBt) = Var(dBt) = dt.

The Brownian shock dBt is distributed normally with a mean of 0 and variance
dt . Brownian shocks over distinct time intervals are uncorrelated.

10.2 Stochastic Integration and Itô Processes

Recall the scaling rule (6.25) for log returns in the discrete-time Brownian motion
set-up:

ln R(�t) := µ�t + √
�t(ln R(1) − µ). (10.12)

Denoting the variance of ln R(1) by σ we can rephrase (10.12) as

ln R(�t) = µ�t + σ

√
�t(ln R(1) − µ)

σ︸ ︷︷ ︸
ε

, (10.13)

where the shock ε has conditional mean zero and variance �t as required by con-
ditions (10.9) and (10.10). We can reinterpret ln R(�t) as ln Sti+1/Sti , whereby
(10.13) becomes

ln Sti+1 − ln Sti = µ�t + σεti+1 . (10.14)

This is a recipe for generating values of ln S always one step ahead. We could make
µ and σ time dependent, or even random as of time 0, as long as µti , σti are known
at time ti .

Applying the formula (10.14) n times (n = T/�t) we obtain the final-period
value ln S�t,T :

ln S�t,T = ln S0 +
n−1∑
i=0

µti�t +
n−1∑
i=0

σti εti+1 . (10.15)

Refining the time step �t → 0 in (10.15) ln S�t,T converges to a continuous-time
random variable ln ST , which is known as the Itô integral, symbolically denoted

ln ST = ln S0 +
∫ T

0
µt dt +

∫ T

0
σt dBt . (10.16)

The collection of the limiting random variables {ln St } indexed by the time subscript
‘t’ is called an Itô process. Equation (10.16) is often written in differential form,

d ln St = µt dt + σt dBt . (10.17)

Equation (10.17) is called the stochastic differential equation, or SDE for short.
The limiting value of the Itô integral does not depend on the shape of the distri-

bution of the ε shocks as long as conditions (10.9) and (10.10) are satisfied and the
shock sizes tend to zero. It is often convenient to think of ε as normally distributed
in the limit.
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10.2.1 Convergence of Sums to Integrals

As with Brownian motion, the standard construction of the Itô integral assumes
mean square convergence, that is, the limit ln ST satisfies

lim
�t→0

E[(ln ST − ln S�t,T )
2] = 0. (10.18)

A more modern approach, the Markov chain approximation method, uses conver-
gence in distribution discussed in Section 7.5.1 of Chapter 7. In general, mean
square convergence implies convergence in distribution, but not vice versa.

In order for the limit of (10.15) to exist, µt and σt must be identifiable from the
history of the shocks ε up to time t . Mathematically, we say that µt and σt must
be adapted to the information filtration generated by the shocks ε. There are good
economic reasons for this requirement that are related to insider trading; for more
discussion of information issues refer to Chapter 8. Moreover, the cumulative drift
and the cumulative volatility must not be too high, otherwise the mean or variance
of ln ST will be infinite and the limit not well defined. The following restrictions
make sure that the limit always exists:

E

[∫ T

0
|µt | dt

]
< ∞, E

[∫ T

0
σ 2
t dt

]
< ∞.

10.2.2 Complete or Incomplete? The Martingale Representation Theorem

What is more important to us, the convergence result (10.18) works in the opposite
direction too. Let us take an arbitrary function g and form a new random variable
g(ln S�t,T ), which we can think of as a ‘derivative security payoff ’. We can now
devise a ‘dynamic hedging strategy’ θt (adapted to the filtration generated by the ε

shocks, which are now interpreted as excess returns) that minimizes the expected
squared error,

E

[(
g(ln S�t,T ) − E[g(ln S�t,T )] −

n−1∑
i=0

θti εti+1

)2 ]
. (10.19)

The computation of the optimal θ is done in Chapter 13, but let us leave that aside
for the moment. Crucially, we will find that the ‘expected squared hedging error’
(10.19) goes to zero in the Brownian motion limit as �t → 0, regardless of how
many values ε takes. For example, we could take a trinomial model for stock prices
in which the option cannot be hedged perfectly, yet we are guaranteed that if we
rescale the trinomial returns in a Brownian fashion the expected squared hedging
error will eventually vanish as �t → 0. This important result is known as the
martingale representation theorem. It explains the mystery of the continuous-time
Black–Scholes model where the market is incomplete if hedging takes place at
discrete-time intervals but where the market becomes complete when continuous
rebalancing is permitted.

The martingale representation theorem is usually written down in continuous
time, which makes it slightly more abstract but nevertheless still useful. We note it
here for future reference.
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Proposition 10.2 (martingale representation theorem). Let {Bt }t∈[0,T ] be a
Brownian motion and let {Ft }t∈[0,T ] be the information filtration generated by this
Brownian motion. Suppose that the random variable X is known at time T in this
information filtration and that E[X2] < ∞. Then there is a ‘hedging process’
{θt }t∈[0,T ] adapted to the filtration {Ft }t∈[0,T ] such that

X = E[X] +
∫ T

0
θt dBt .

10.3 Important Itô Processes

10.3.1 Brownian Motion with Drift

Consider a stochastic differential equation along the lines of (10.17). When µ and
σ are constant over time, the process X = ln S becomes a Brownian motion with
drift:

dXs = µ ds + σ dBs,

Xt − X0 =
∫ t

0
dXs =

∫ t

0
µ ds +

∫ t

0
σ dBs,

Xt = X0 + µt + σ (Bt − B0)︸ ︷︷ ︸
N(0,t)

. (10.20)

The word ‘drift’ signifies that the expected change in X increases with time:

E[Xt − X0] = µt + E[σ(Bt − B0)]︸ ︷︷ ︸
0

= µt.

Since the distribution of Bt − B0 is normal it is easy to see from (10.20) that

Xt − X0 ∼ N(µt, σ 2t).

Replacing 0 with an arbitrary time s, s < t , we conclude that, conditional on
the information at time s, the random variable Xt − Xs is distributed normally
N(µ(t − s), σ 2(t − s)). In particular, this means X is a Markov process.

10.3.2 Gaussian Processes

When µ and σ depend only on calendar time (their time t value is known at time
0), the situation is very similar. In discretized form,

X�t,T = X0 +
n−1∑
i=0

µti�t +
n−1∑
i=0

σti εti+1 . (10.21)

Properties of normal variables.

• If Z is normally distributed and a, b are constants, then a + bZ again has
a normal distribution.

• The sum of jointly normal variables is again distributed normally.
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By assumption the values µti and σti are known at time 0 and therefore the
expression on the right-hand side of (10.21) is a linear combination of normally
distributed variables σti εti+1 plus a constant, hence XT itself has normal distribution.
By virtue of (6.1) its mean is

E[XT ] = X0 +
n−1∑
i=0

µti�t (10.22)

and by virtue of (6.2) its variance is

Var(XT ) =
n−1∑
i=0

σ 2
ti

Var(εti ) =
n−1∑
i=0

σ 2
ti
�t (10.23)

because the shocks εti are by construction uncorrelated. Consequently,

XT − X0 ∼ N

(n−1∑
i=0

µti�t,

n−1∑
i=0

σ 2
ti
�t

)
.

As �t → 0 the sums (10.22) and (10.23) turn into integrals:

n−1∑
i=0

µ(ti)�t →
∫ T

0
µ(t) dt,

n−1∑
i=0

σ 2(ti)�t →
∫ T

0
σ 2(t) dt.

An Itô process dX = µt dt + σt dBt with deterministic µt and σt is called a
Gaussian process under measure P . The reason for this is given in the following
proposition.

Proposition 10.3. If X is an Itô process with deterministic P -drift µt and deter-
ministic volatility σt then

1. for any u � s we have

Xu | Fs ∼ N

(
Xs +

∫ u

s

µt dt,
∫ u

s

σ 2
t dt

)
. (10.24)

In other words, the conditional P -distribution of Xu as of time s is normal
(Gaussian).

2. For each n � 1 and any times 0 � t0 � t1 � · · · � tn, the random variables
{Xtr − Xtr−1}r=1,...,n are independent.

Equation (10.24) demonstrates that any process which is Gaussian under P also
possesses the Markov property under P .

Example 10.4. Find the distribution of XT if

dXt = 2t dt − √
t dBt .
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Solution. Since both the volatility and drift of dXt are deterministic we can apply
the result (10.24) to

µt = 2t,

σt = √
t,

whereby we obtain∫ T

0
µt dt =

∫ T

0
2t dt = T 2,∫ T

0
σ 2
t dt =

∫ T

0
(
√
t)2 dt =

∫ T

0
t dt = 1

2T
2.

Hence
XT ∼ N(X0 + T 2, 1

2T
2).

10.3.3 Stochastic Drift and Volatility

In this most general case µt and σt are not known at time 0, although they have to
be known at time t . A frequently encountered example is the Ornstein–Uhlenbeck
process (also known as the mean-reverting process),

dXt = (α − βXt) dt + σ dBt

which appears in a discrete-time version in econometrics as an AR(1) process, see
Exercise 10.9. Another example of a process with stochastic drift and volatility is
the geometric Brownian motion,

dXt = µXt dt + σXt dBt ,

which is used to model stock prices.
As we show in the next proposition, both the Ornstein–Uhlenbeck process and

the geometric Brownian motion are Markov under P .

Proposition 10.5. Suppose X is an Itô process

dXt = µt dt + σt dBt .

If there are functions b and c such that µt = b(t, Xt ) and σ 2
t = c(t, Xt ), then X is

Markov under measure P .

10.4 Function of a Stochastic Process: the Itô Formula

Let f be a differentiable function of time, then

f (t) = f (0) +
∫ t

0
f ′(s) ds.

A curious property of Itô processes is that the above identity does not hold any more
when t is replaced by an Itô process Xt :

f (Xt ) �= f (X0) +
∫ t

0
f ′(Xs) dXs.
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Instead, if dXt = µt dt + σt dBt , an extra correction term is needed:

f (Xt ) = f (X0) +
∫ t

0
f ′(Xs) dXs + 1

2

∫ t

0
f ′′(Xs)σ

2
s ds︸ ︷︷ ︸

Itô correction

. (10.25)

Equation (10.25) is known as the the Itô formula and it is often written in differ-
ential form,

dXt = µt dt + σt dBt , (10.26)

df (Xt ) = f ′(Xt ) dXt + 1
2f

′′(Xt )σ
2
t dt. (10.27)

The standard calculus
df (Xt ) = f ′(Xt ) dXt

can be used either when f is linear in X or when the process X is locally non-
stochastic, σt = 0.

For the proof of the Itô formula see Section 10.8.

10.5 Applications of the Itô Formula

• The Itô formula is often written and used in the form,

dXt = µt dt + σt dBt , (10.28)

df (Xt ) = (f ′(Xt )µt + 1
2f

′′(Xt )σ
2
t ) dt + f ′(Xt )σt dBt . (10.29)

From experience, it is not a good idea to use it in this way. It is hard to
remember with one Itô process and it becomes impossible to remember
with several Itô processes. It is also difficult to apply, because one has to
identify correctly what σt is equal to.

• A good way to remember and apply the Itô formula is to think of a second-
order Taylor expansion,

df (Xt ) = f ′(Xt ) dXt + 1
2f

′′(Xt )(dXt)
2,

where (dXt)
2 is replaced by the conditional variance of dXt :

df (Xt ) = f ′(Xt ) dXt + 1
2f

′′(Xt )Vart (dXt). (10.30)

This way one gets the right economic intuition and one does not have to
remember what dXt is equal to. This formula changes very little when
more state variables are added.

10.5.1 Geometric Brownian Motion

Example 10.6. Suppose that the stock price St follows a geometric Brownian mo-
tion,

dSt

St

= µ dt + σ dBt ; (10.31)

let us find the SDE for ln St .
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Solution. We have f (St ) = ln St . The first and second derivatives with respect to
St are

f ′(St ) = 1/St , (10.32)
f ′′(St ) = −1/S2

t , (10.33)

hence the Itô formula (10.30) reads

d ln St = dSt

St

− 1

2

Vart (dSt )

S2
t

. (10.34)

As the second step we need to evaluate the conditional variance Vart (dSt ). For
this purpose we will isolate dSt on the left-hand side of the SDE (10.31):

dSt = µSt dt + σSt dBt . (10.35)

The conditional variance is evaluated using standard rules for variance (see equation
(6.7)). Substituting from (10.35)

Vart (dSt ) = Vart (µSt dt + σSt dBt).

By assumption St is known at time t so µSt dt acts as a constant and does not affect
the variance:

Vart (dSt ) = Vart (σSt dBt).

By the same token, σSt is known at time t and can be taken in front of the variance:

Vart (dSt ) = (σSt )
2 Vart (dBt)︸ ︷︷ ︸

dt

.

Finally, the scaling properties of Brownian motion tell us that Vart (dBt) = dt and
hence

Vart (dSt ) = (σSt )
2 dt. (10.36)

With a little bit of practice one can go straight from (10.35) to (10.36) skipping the
intermediate steps.

Substituting (10.35) and (10.36) into the Itô formula (10.34) we obtain

d ln St = (µ − 1
2σ

2) dt + σ dBt .

In conclusion, if the stock price levels follow a geometric Brownian motion, then
the logarithm of stock prices follows a Brownian motion with drift and vice versa.
Specifically, the conditional distribution of log returns is normal,

ln St − ln S0 ∼ N((µ − 1
2σ

2)t, σ 2t),

which means that returns are distributed lognormally.

10.5.2 Compounded Stochastic Interest Rate

Example 10.7. In continuous time the compounded return on bank deposits is given
by

βt = exp

(∫ t

0
rs ds

)
.

Find the SDE for βt assuming that rt is itself an Itô process.
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Solution. We notice that βt is a function of the Itô process Xt ,

Xt =
∫ t

0
rs ds,

for which the SDE reads
dXt = rt dt. (10.37)

The cumulative interest rate process Xt is locally non-stochastic because the dBt

part is missing in (10.37).
We can now re-express βt as a function of Xt

βt = eXt

and apply the Itô formula to f (Xt ) = eXt . Since Xt is locally non-stochastic, the
Itô calculus turns into standard calculus,

dβ(t) = f ′(Xt )︸ ︷︷ ︸
βt

dX(t) + 1
2f

′′(Xt )Vart (dXt)︸ ︷︷ ︸
0

= βt rt dt.

This result is frequently written in the form

dβt

βt

= rt dt,

where the left-hand side represents the rate of return on a locally safe bank account
deposit.

10.6 Multivariate Itô Formula

The Itô formula changes marginally when we allow f to be a function of m Itô pro-
cesses X1t , X2t , . . . , Xmt generated by m, possibly correlated, Brownian motions:

dX1t = µ1t dt + σ1t dB1t ,

dX2t = µ2t dt + σ2t dB2t ,

dXmt = µmt dt + σmt dBmt .

The Itô formula then becomes

df (Xt ) =
m∑
i=1

∂f

∂Xit

dXit + 1

2

m∑
i=1, j=1

∂2f

∂Xit ∂Xjt

Covt (dXit , dXjt ), (10.38)

where
Covt (dXi, dXj) = σitσjtρij t dt

with ρijt being the assumed correlation between dBit and dBjt .
Often time appears as one of the state variables determining the value of f . If we

set X0t = t , then (10.38) becomes

df (t, Xt ) = ∂f

∂t
dt +

m∑
i=1

∂f

∂Xit

dXit + 1

2

m∑
i=1, j=1

∂2f

∂Xit ∂Xjt

Covt (dXit , dXjt ),

(10.39)
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since Covt (dt, dXit ) = 0. The following elementary properties of covariance are
extremely useful in the application of the multivariate Itô formula.

Let X, Y be random variables and ai , bi constants:

• Cov(X,X) = Var(X);
• Cov(X, Y ) = Cov(Y,X);
• Cov(a1, Y ) = 0;
• Cov(a1 + b1X, a2 + b2Y ) = b1b2 Cov(X, Y ).

Specifically, in the context of the Itô formula let ait , bit be known at time t , then

• Covt (a1t dt + b1t dBt , a2t dt + b2t dBt) = b1t b2t dt .

Two applications of the multivariate Itô formula are given below. Further appli-
cations appear in Sections 11.3 and 11.5.

10.6.1 Ornstein–Uhlenbeck Process

Example 10.8. Consider the Ornstein–Uhlenbeck process:

dXt = (α − βXt) dt + σ dBt . (10.40)

Using the Itô formula show that the process Xt ,

Xt = α

β
+
(
X0 − α

β

)
e−βt + σe−βt

∫ t

0
eβs dBs, (10.41)

satisfies the Ornstein–Uhlenbeck SDE (10.40).

Solution. Define a new Itô process Zt ,

Zt =
∫ t

0
eβs dBs, (10.42)

so that we have

Xt = α

β
+
(
X0 − α

β

)
e−βt + σe−βtZt (10.43)

and from (10.42)
dZt = eβt dBt . (10.44)

To find the SDE for X apply the Itô formula to the right-hand side of (10.43) treating
t and Zt as state variables. Since the expression (10.43) is linear in Zt and Zt is the
only random component in it, we will effectively be using standard calculus.

The required partial derivatives are

∂f (t, Zt )

∂t
= −β

(
X0 − α

β

)
e−βt − βσe−βtZt

= α − βXt by virtue of (10.43),

∂f (t, Zt )

∂Zt

= σe−βt ,
∂2f (t, Zt )

∂Z2
t

= 0,
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and the Itô formula (10.39) gives

dXt = (α − βXt) dt + σe−βt dZt

= (α − βXt) dt + σ dBt ,

which is what we wanted to demonstrate.

• The Ornstein–Uhlenbeck process is a Markov process.
• By virtue of (10.41) its increments are normally distributed.
• The discretely sampled Ornstein–Uhlenbeck process is equivalent to the

discrete-time autoregressive process (see Exercise 10.9).
• The Ornstein–Uhlenbeck process is the simplest example of an affine pro-

cess (see Chapter 7, p. 162) with non-IID increments.
• Among many applications it is used to model short rate in the Vašı́ček

model of term structure of interest rates.

10.6.2 Discounted Price Process

Example 10.9. Find the SDE for the discounted stock price,

f (βt , St ) = St/βt .

Solution. We have seen in Example 10.5 that the compounded bank account return
βt evolves according to

dβt = rtβt dt,

which means that β is locally non-stochastic. This, and the fact that St/βt is linear
in St , means that we are effectively using standard calculus. Namely, if we write
down the Itô formula for f (βt , St ) symbolically,

df (βt , St ) = ∂f (βt , St )

∂βt

dβt + ∂f (βt , St )

∂St

dSt

+ 1

2

(
∂2f (βt , St )

∂β2
t

Vart (dβt )︸ ︷︷ ︸
0

+2
∂2f (βt , St )

∂βt∂St

Covt (dβt , dSt )︸ ︷︷ ︸
0

+ ∂2f (βt , St )

∂S2
t︸ ︷︷ ︸

0

Vart (dSt )

)
,

it is clear that all quadratic terms vanish. For the first-order terms the requisite
partial derivatives are

∂(St/βt )

∂βt

= − St

β2
t

,
∂(St/βt )

∂St

= 1

βt

.

The result is therefore

d

(
St

βt

)
= − St

β2
t

rtβt dt + dSt

βt

,

d(S(t)/β(t))

S(t)/β(t)
= dSt

St

− rt dt. (10.45)
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The right-hand side of (10.45) is the continuous-time equivalent of one-period excess
return. It is worth noting that to arrive at (10.45) one does not need to know the
specific form of the SDE for S or r; the derivation works for any pair of Itô processes
S and r . This is another reason to favour (10.30) over (10.28) and (10.29).

10.7 Itô Processes as Martingales

Much of continuous-time finance revolves around martingales; therefore, we need
a simple criterion that can tell us whether a given Itô process is a martingale.

The first martingale proposition tells us that a discrete time process is a P -
martingale if and only if

0 = Et [Xt+1 − Xt ] for all t, (10.46)

and if E[Xt ] is finite for all t . The process X satisfying only (10.46) is called a local
martingale. In continuous time the local martingale condition becomes

0 = Et [dXt ] for all t. (10.47)

For an Itô process dXt = µt dt + σt dBt we have

Et [dXt ] = µt dt + σtEt [dBt ] = µt dt, (10.48)

which means that X is a local martingale under P if and only if µt = 0 for all t .

The Itô process dXt = µt dt +σt dBt is a local martingale under P if and only if
it has zero P -drift, µt = 0 for all t . A local martingale X becomes a martingale
under P if in addition σt meets certain technical conditions to make E[Xt ] finite.
We assume throughout this book that such conditions are satisfied.

Example 10.10. Find out whether the process B2
t − t is a martingale.

Solution. Apply the Itô formula to B2
t − t :

d(B2
t − t) = 2Bt dBt − dt︸ ︷︷ ︸

standard calculus

+ 1
2 2 Vart (dBt)︸ ︷︷ ︸

Itô correction

= 2Bt dBt − dt + dt = 0 dt + 2Bt dBt .

Since the drift is 0 we have shown that B2
t − t is a martingale.

10.7.1 Characterization of Brownian Motion

Lévy gives the following simple characterization of Brownian motion. An Itô pro-
cess Xt is a Brownian motion if and only if both processes,

Xt,

X2
t − t,

are martingales. This characterization is useful in the proof of the Girsanov theorem,
which underpins continuous-time asset pricing.
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10.8 Appendix: Proof of the Itô Formula

Suppose that we are given an Itô process Xt :

dXt = µt dt + σt dBt . (10.49)

The SDE for a new process f (Xt ) is given by the Itô formula:

df (Xt ) = f ′(Xt ) dXt + 1
2f

′′(Xt )σ
2
t dt.

Proof. Here we will sketch the reasoning that leads to the Itô formula. These ideas
require no more than a univariate Taylor expansion and the rules for calculating mean
and variance. First let us use the Taylor expansion of the function f (X) around a
fixed point X up to second order:

df (Xt ) = f ′(Xt ) dXt + 1
2f

′′(Xt )(dXt)
2. (10.50)

Let us now examine the quadratic term of the Taylor expansion (10.50). Recall that
Xt , µt and σt are known at time t and that dBt ∼ N(0, dt), implying

Et [dBt ] = 0, Et [(dBt)
2] = dt,

Et [(dBt)
3] = 0, Et [(dBt)

4] = 3(dt)2.

}
(10.51)

Let us examine the mean and the variance of the term (dXt)
2. Substituting for dXt

from (10.49) and using standard properties of expectation we have

dXt = µt dt + σt dBt ,

Et [(dXt)
2] = σ 2

t dt + (µ dt)2,

Vart ((dXt)
2) = Et [(dXt)

4] − (Et [(dXt)
2])2

= (µdt)4 + 6(µσ)2(dt)3 + 3σ 4(dt)2 − (σ 2
t dt + (µ dt)2)2.

The only term of order dt is σ 2
t dt . Consequently, in the mean square limit we can

write
(dXt)

2 = σ 2
t dt = Vart (dXt)

with precision (dt)2. Substituting this result into the Taylor expansion (10.50) we
obtain

df (Xt ) = f ′(Xt ) dXt + 1
2f

′′(Xt )σ
2
t dt

= f ′(Xt ) dXt + 1
2f

′′(Xt )Vart (dXt),

which is the Itô formula.

10.9 Summary

• The material in this chapter is difficult to summarize because it is already quite
condensed and pretty much everything is important. In these circumstances
it is probably most productive to concentrate on the basics.

• Rule 1: Brownian increments over disjoint time intervals are uncorrelated,
for example, B4 − B0 is uncorrelated with B10 − B4.

• Rule 2: Brownian increments have mean zero.



230 10. Brownian Motion and Itô Formulae

• Rule 3: Brownian increments have a jointly normal distribution.
• Rule 4: The variance of a Brownian increment equals the length of the corre-

sponding time interval, for example, Var(B10 − B4) = 10 − 4.
• Rule 5: The scalar multiple of normal variable is again normal.
• Rule 6: Scaling of variances Var(µ + σX) = σ 2 Var(X).
• Rule 7: The expectation of a sum equals the sum of expectations, always.
• Rule 8: The variance of a sum equals the sum of variances, if summands are

uncorrelated.
• Rule 9: The sum of jointly normally distributed variables is again normally

distributed.
• Rules 1–9 are key to simple stochastic integration, which is all one needs at

this level. For example, to work out the distribution of
∫ T

0 eβs dBs we realize
that the shocks dBs are normally distributed with mean 0 and variance ds
(Rules 2 and 4). Then eβs dBs ∼ N(0, e2βs ds) by Rules 5 and 6. Finally,∫ T

0
eβs dBs ∼ N

(
0,
∫ T

0
e2βs ds

)
by Rules 1, 7, 8 and 9.

• The multivariate Itô formula: think of a second-order Taylor expansion where
all second-order terms containing dt are omitted and dX1 dX2 is replaced with
the conditional covariance,

df (t, X1t , X2t ) = ∂f

∂t
dt + ∂f

∂X1t
dX1t + ∂f

∂X2t
dX2t

+ 1

2

2∑
i=1, j=1

∂2f

∂Xit ∂Xjt

Covt (dXit , dXjt ).

The rules for manipulating covariances are derived in Appendix B and appear
in Section 10.6.

• The continuous-time analogy of the first martingale proposition goes as fol-
lows. Let B be a Brownian motion under measure P . The Itô process X with
SDE

dXt = µt dt + σt dBt

is a martingale under measure P if and only if µt = 0 for all t (and E[Xt ] is
finite).

10.10 Notes

The technicalities behind Itô integrals and stochastic calculus can be offputting.
Øksendahl (1998) is a rigorous yet accessible introduction to the mathematical as-
pects of Itô processes and Brownian motion. Shreve (2004b) is particularly friendly
to students. Another good reference with finance applications is Hunt and Kennedy
(2000). The Markov chain approximation method is explained very carefully in
Kushner and Dupuis (2001). Neftci (1996) gives a version of the Itô formula with
Poisson jumps. de Finetti (1974b) has an accessible introduction to Lévy processes.



10.11. Exercises 231

10.11 Exercises

Exercise 10.1. Prove (10.3)–(10.5) by using the law of iterated expectations and
the law of conditional constant.

Exercise 10.2. Generate 100 steps of the random walk with time step 1 in a spread-
sheet.

In the following questions B is a standard Brownian motion.

Exercise 10.3. Calculate Es[Xt ] for s < t and decide whether the process X is a
martingale:

(a) Xt = tBt ,
(b) Xt = −Bt ,
(c) Xt = B2

t − t ,
(d) Xt = B3

t − tBt .

Exercise 10.4 (stochastic integration). Find the conditional distribution of Xt

given the information at time s. In each case decide whether the process X is
Markov:

(a) dXt = 3 dt + 7 dBt ,
(b) dXt = 2t dt − t dBt ,
(c) dXt = 0.15Xt dt + 0.2Xt dBt ,
(d) dXt = Xt dt + Bt dBt .

Exercise 10.5 (Itô formula). Fill in the right-hand side:

(a) d(B2
t − t) =

(b) d(B3
t − tBt ) =

(c) deBt =
Exercise 10.6 (investment evaluation). The prices of two stocks follow a geometric
Brownian motion,

dS1(t) = 0.1S1(t) dt + 0.2S1(t) dB1(t),

dS2(t) = 0.15S2(t) dt + 0.4S2(t) dB2(t),

S1(0) = S2(0) = 1,

where B1(t) and B2(t) are correlated Brownian motions with ρ(dB1(t), dB2(t)) =
0.6.

(a) Using the Itô formula find the SDEs for the increments d ln S1(t), d ln S2(t).
(b) Using your result in part (a), write ln S1(8) and ln S2(10) as Itô integrals.
(c) Find the mean and variance of ln S1(8) as seen at time t = 0.
(d) Describe the distribution of ln S1(8) − ln S2(10) = ln S1(8)/S2(10) as seen

at time t = 0.
(e) Find the a priori probability (as seen at time t = 0) for the event that the price

of the first stock at time 8 is at least twice as large as the price of the second
stock at time 10.
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(f) Thinking of the second stock as a benchmark, find the level of relative perfor-
mance R1% such that S1(8)/S1(0) underperforms R1%S2(10)/S2(0) in only
1% of cases.

Exercise 10.7 (solution to the Ornstein–Uhlenbeck SDE). For the Ornstein–
Uhlenbeck process X with SDE,

dXt = (α − βXt) dt + σ dBt , (10.52)

find
d(eβtXt ) =

Integrate both sides from 0 to T to find an explicit expression for XT .

Exercise 10.8 (conditional distribution of the Ornstein–Uhlenbeck process).
The risk-free interest rate rt in the Vašı́ček model follows the Ornstein–Uhlenbeck
process. It is known that rt can be expressed as a stochastic integral,

rt = 0.03 + (r0 − 0.03)e−0.8t + 0.002e−0.8t
∫ t

0
e0.8s dBs,

where B is a Brownian motion. Find the distribution of rt as of time 0. Justify your
answer.

Exercise 10.9 (discrete sampling of mean reverting process). Suppose we ob-
serve the Ornstein–Uhlenbeck process in equation (10.52) at annual frequency. If
we write

Xt+1 = µ + ρXt + σ̃ εt+1, (10.53)

where ε1, ε2, ε3, . . . are independent standard normal variables such that εt is known
at time t but not before, what values of µ, ρ, σ̃ correspond to α, β, ρ in equation
(10.52)? To find out, you will need to compute the conditional distribution of Xt+1
given Xt implied by (10.52) and compare it with the conditional distribution of Xt+1
given Xt implied by (10.53):

µ =
ρ =
σ̃ =

Exercise 10.10 (evaluating mean reversion). Evaluate the expectation of the future
value of an Ornstein–Uhlenbeck process E[Xt ] with Xt given in (10.41), using the
arguments of Section 10.7.
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Continuous-Time Finance

In the first part of this chapter we will apply the idea of risk-neutral pricing to the
continuous-time model of security prices and rederive the Black–Scholes formula.
The second part constructs the change of measure in continuous time and uses it
to evaluate dynamic optimal investment in the Black–Scholes model. The third
part discusses risk-neutral pricing with several risky securities. The fourth shows
how to construct the no-arbitrage partial differential equation from the martingale
properties of discounted asset prices. The final part reviews the numerical methods
used in asset pricing.

11.1 Summary of Useful Results

11.1.1 The Itô Process as a Martingale

Suppose B is a Brownian motion under measure P and that Xt is an Itô process,

dXt = µt dt + σt dBt , (11.1)

where the drift µt and volatility σt are known at time t (they are adapted processes).
The same fact is equivalently expressed in integral form as

Xt = X0 +
∫ t

0
µs ds +

∫ t

0
σs dBs.

The process {Xt }t∈[0,T ] is a martingale under measure P if and only if

Et [dXt ] = 0

for all t ; in particular, in conjunction with (11.1) its drift µt is zero for all t ∈ [0, T ].
11.1.2 Itô Formula Results

1. If Xt is a geometric Brownian motion with deterministic coefficients µt and
σt ,

dXt

Xt

= µt dt + σt dBt , (11.2)

then ln Xt is a Brownian motion with deterministic drift and volatility,

d ln Xt = (µt − 1
2σ

2
t ) dt + σt dBt . (11.3)

2. If Xt is as above and

βt = exp

(∫ t

0
rs ds

)
, (11.4)
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then

d

(
Xt

βt

)
= (µt − rt )

Xt

βt

dt + σt

Xt

βt

dBt . (11.5)

11.1.3 Expectation of Truncated Lognormal Variable

We derive in Section B.10.2 that for a normally distributed random variable X,

X ∼ N(m, s2), (11.6)

we have

E[max(eX − K, 0)] = exp(m + 1
2 s

2)Φ

(
m + s2 − ln K

s

)
− KΦ

(
m − ln K

s

)
,

(11.7)

where Φ is the cumulative standard normal distribution.

11.2 Risk-Neutral Pricing

In this section we will rederive the Black–Scholes option price formula using the
newly acquired Itô calculus. The whole exercise shows how much easier the calcu-
lations are in continuous time (once we know what we are doing) compared with
the calculation of the normal limit in Chapter 6. The main features of risk-neutral
pricing are reiterated in another example, where we price a log contract instead of
an option.

11.2.1 The Black–Scholes Formula Revisited

Consider a model with independent and identically distributed log returns,

d ln St = µ̃ dt + σ dBt , (11.8)

where B is a Brownian motion under the objective probability. Assume that the
risk-free rate r is constant. We will now describe how the calculations of Chapter 6
can be captured using Itô calculus.

1. To obtain price levels from (11.8) apply the Itô formula to eln St , or simply
use the result (11.2) and (11.3) in reverse:

dSt

St

= (µ̃ + 1
2σ

2)︸ ︷︷ ︸
denote by µ

dt + σ dBt . (11.9)

2. From the risk-neutral pricing we know that

EQ
t

[
dSt

St

]
= r dt, (11.10)

we will therefore decompose the stock return (11.9) as follows:

dSt

St

= r dt + σ

(
µ − r

σ
dt + dBt

)
︸ ︷︷ ︸

dBQ
t

. (11.11)
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3. Define a new Itô process BQ:

dBQ
t = µ − r

σ
dt + dBt . (11.12)

By virtue of (11.10) and (11.11) the new process is a martingale under measure
Q.

4. It turns out thatBQ is not only a martingale underQ but in fact it is a Brownian
motion under Q, that is, VarQt (dBQ

t ) = dt . This is one of the consequences
of the Girsanov theorem, which is discussed in more detail in Section 11.3.

5. To sum up, in dSt/St = µ dt + σ dBt one can mechanically replace µ with
r and dB with dBQ:

dSt

St

= µ dt + σ dBt = r dt + σ dBQ
t . (11.13)

Crucially, BQ is a Brownian motion under the risk-neutral measure. In short,
when asset prices are Itô processes, changing measure only affects the con-
ditional mean of asset returns but not their conditional variance. We have
realized this already in equations (6.27) and (6.28).

6. Find the distribution of ln ST under measure Q. To this end we will apply the
Itô formula result (11.2) and (11.3) to equation (11.13) and integrate

d ln St = (r − 1
2σ

2) dt + σ dBQ
t , (11.14)

ln ST = ln St +
∫ T

t

(r − 1
2σ

2) ds +
∫ T

t

σ dBQ
s ,

ln ST | Ft
Q∼ N(ln St + (r − 1

2σ
2)(T − t), σ 2(T − t)). (11.15)

Again, we have seen this result in equation (6.30).
7. The discounted price process of all traded assets without dividends is a mar-

tingale under Q, specifically for the option we have

Ct

βt

= EQ
t

[
CT

βT

]
. (11.16)

Bearing in mind that the terminal option payoff is CT = max(ST −K, 0) we
can use the martingale condition (11.16) to express the current option price
as a risk-neutral expectation:

Ct = βtE
Q
t

[
max(ST − K, 0)

βT

]
.

In our case the safe rate is deterministic and we can take the discount factor
in front of the expectation:

Ct = e−r(T−t)EQ
t [max(ST − K, 0)]. (11.17)

Apply the formulae (11.6) and (11.7) to (11.15) and (11.17) with X = ln ST ,

m = ln St + (r − 1
2σ

2)(T − t),

s2 = σ 2(T − t).
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The result is the famous Black–Scholes formula:

Ct = StΦ

(
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

)

− Ke−r(T−t)

(
ln(S0/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

)
. (11.18)

8. The same procedure works with the deterministic time-dependent safe rate
and stock return volatility. If we denote by rAV, σ 2

AV the average risk-free
return and average variance of log returns over period [t, T ],

rAV = 1

T − t

∫ T

t

rs ds,

σ 2
AV = 1

T − t

∫ T

t

σ 2
s ds,

then it is enough to simply replace r and σ in (11.18) with rAV and σAV.

11.2.2 Another Example: Log Contract Pricing

Example 11.1. Suppose we have a stock with no dividends and IID log returns:

dSt

St

= µ dt + σ dBt .

Find the no-arbitrage price of a log contract, which is a security that pays ln ST at
maturity T .

Solution. We can start straight from step 5. From the Girsanov theorem,

dSt

St

= r dt + σ dBQ
t ,

where BQ is a Brownian motion under risk-neutral measure. By the Itô formula
(11.2) and (11.3), ln S is a Brownian motion with drift

d ln St = (r − 1
2σ

2) dt + σ dBQ
t

and after integration

ln ST | Ft
Q∼ N(ln St + (r − 1

2σ
2)(T − t), σ 2(T − t)). (11.19)

Denote by Lt the log contract price, then from the risk-neutral pricing formula,

Lt = e−r(T−t)EQ
t [ln ST ].

By virtue of (11.19),

EQ
t [ln ST ] = ln St + (r − 1

2σ
2)(T − t)

and consequently

Lt = e−r(T−t)(ln St + (r − 1
2σ

2)(T − t)).
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11.2.3 Another Example: Pricing in the Presence of Dividends

Example 11.2. Assume as before that the increments in log stock price are IID,

dSt

St

= µ dt + σ dBt ,

but suppose in addition that the stock pays a dividend δ̂St dt . Price a call option in
this model.

Solution. The underlying principle of risk-neutral pricing is

EQ
t [risky rate of return] = risk-free rate of return.

Without dividends the risky rate of return over time dt is exactly

St+dt

St

− 1 = dSt

St

.

With dividends being paid at a rate δ̂ the risky rate of return is

payoff tomorrow︷ ︸︸ ︷
St+dt + δ̂St dt

St︸︷︷︸
price today

− 1 = dSt

St

+ δ̂ dt.

The Girsanov theorem tells us that the change of measure does not affect the volatility
of risky returns,

VarQt

(
dSt

St

+ δ̂ dt

)
= Vart

(
dSt

St

+ δ̂ dt︸︷︷︸
const.

)
= Vart

(
dSt

St

)
= σ 2 dt,

and therefore the risk-neutral SDE must read
dSt

St

+ δ̂ dt︸ ︷︷ ︸
risky rate
of return

= r dt︸︷︷︸
risk-free rate

of return

+ σ dBQ
t︸ ︷︷ ︸

random part
mean 0, variance σ 2 dt

,

where BQ is a Brownian motion under the risk-neutral measure.
From here it is easy to figure out the risk-neutral distribution of log returns (the

derivation is the same as in points 5 and 6 of the Black–Scholes example):

ln ST | Ft
Q∼ N(ln St + (r − δ̂ − 1

2σ
2)(T − t), σ 2(T − t)).

One then repeats point 7 of the Black–Scholes derivation with the modified distri-
bution of log returns.

11.3 The Girsanov Theorem

In step 3 of the risk-neutral pricing we defined a new Itô process BQ,

dBQ
t = µ − r

σ
dt + dBt , (11.20)
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which we know is a martingale under Q. The Girsanov theorem claims the follow-
ing.

1. The unique change of measure mT = dQ/dP that turns BQ into a martingale
is given by

ln mT =
∫ T

0
−1

2

(
µ − r

σ

)2

dt −
∫ T

0

(
µ − r

σ

)
dBt . (11.21)

2. f (t, B
Q
t ) = (B

Q
t )2 − t is a martingale under Q, which implies that BQ is a

Brownian motion under Q. More intuitively, one can write

Vart (dB
Q
t ) = VarQt (dBQ

t ) = dt;
change of measure does not affect volatility.

Proof of 1. We will construct the required change of measuremT , taking for granted
thatmT can be written as an Itô integral with respect toB (this is in fact a consequence
of the martingale representation theorem on p. 220):

mT = E[mT ]︸ ︷︷ ︸
1

+
∫ T

0
λs dBs.

For the next two sentences we need knowledge from Chapter 9. Let mt = Et [mT ]
be the density process of the change of measure. Since Es[dBs] = 0 by (9.3) and
(9.4) we have

mt = Et [mT ] = 1 +
∫ t

0
λs dBs. (11.22)

Equation (11.22) in differential form reads

dmt = λt dBt . (11.23)

By the third martingale proposition (p. 197), BQ
t is a martingale under Q if and

only if {mtB
Q
t } is a martingale under measure P . This condition will in turn help

us to identify the density process mt .
We will find out whether the process mBQ is a martingale by looking at its drift.

Applying the multivariate Itô formula to f (mt , B
Q
t ) = mtB

Q
t we obtain

d(mtB
Q
t ) = mt dBQ

t + B
Q
t dmt

+ 1

2

(
∂2f

∂m2
t︸︷︷︸

0

Vart (dmt) + 2
∂2f

∂mt∂B
Q
t︸ ︷︷ ︸

1

Covt (dmt, dBQ
t )

+ ∂2f

∂(B
Q
t )2︸ ︷︷ ︸

0

Vart (dB
Q
t )

)
. (11.24)



11.3. The Girsanov Theorem 239

Substituting from (11.20) and (11.23) we have

Covt (dmt, dBQ
t ) = Covt

(
λt dBt ,

µ − r

σ
dt + dBt

)
= λt Covt (dBt , dBt) = λt dt,

and plugging this result back into (11.24) we find

d(mtB
Q
t ) =

(
mt

µ − r

σ
+ λt

)
dt + (mt + B

Q
t λt ) dBt ,

Et [d(mtB
Q
t )] =

(
mt

µ − r

σ
+ λt

)
dt.

By the third martingale proposition, the process mtB
Q
t is a martingale under P

if and only if Et [d(mtB
Q
t )] = 0, which requires

mt

µ − r

σ
+ λt = 0,

λt = −µ − r

σ
mt . (11.25)

Now substitute λt from (11.25) into the SDE for the density process (11.23),

dmt = −µ − r

σ
mt dBt . (11.26)

We can see from (11.26) that in the Black–Scholes model the density process is
a geometric Brownian motion and that it is unique. It is now easy to find the SDE
for ln mt from (11.2) and (11.3)

d ln mt = −1

2

(
µ − r

σ

)2

dt − µ − r

σ
dBt ,

and after integration

ln mT = ln m0︸ ︷︷ ︸
0

−1

2

(
µ − r

σ

)2

T − µ − r

σ
(BT − B0). (11.27)

Proof of 2. From the Itô formula we have

df (t, B
Q
t ) = 2BQ

t dBQ
t − dt + 1

2 2 Vart (dB
Q
t )︸ ︷︷ ︸

dt

= 2BQ
t dBQ

t .

Since B
Q
t is a martingale under Q we have

EQ
t [df (t, B

Q
t )] = 2BQ

t EQ
t [dBQ

t ] = 0,

which together with the first martingale proposition implies that

f (t, B
Q
t ) = (B

Q
t )2 − t
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is itself a martingale under Q. Hence both processes B
Q
t and (B

Q
t )2 − t are mar-

tingales under Q, which, by virtue of Section 10.7.1, implies that BQ is a Brownian
motion under Q.

11.3.1 Application of Girsanov Theorem: Dynamic Optimal Investment

In this section we will demonstrate how the change of measure (11.27) can be used
to evaluate the investment potential of dynamic trading. Recall that the investment
potential is the percentage increase in certainty equivalent resulting from investing
in the risky asset for an agent with unit local risk aversion. When the local risk
aversion is more than 1 the percentage gain is proportionally lower.

From (9.70) the expression for the investment potential is

IPγ = γ

(
E

[
mT

βT

](
E

[(
mT

βT

)1−1/γ ])γ /(1−γ )

− 1

)
. (11.28)

This expression can be simplified since in the Black–Scholes model βT is non-
random. Bearing in mind that E[mT ] = 1, (11.28) becomes

IPγ = γ ((E[m1−1/γ
T ])γ /(1−γ ) − 1). (11.29)

It now remains to evaluate the expectation E[m1−1/γ
T ] inside the round bracket.

Facts. Let X ∼ N(µ̃, σ̃ 2). Then

g(λ) = E[eλX] = eλµ̃+λ2σ̃ 2/2. (11.30)

As an aside, the function g(λ) is called the moment-generating function of the
random variable X.

We will use (11.30) with λ = 1 − 1/γ and X = ln mT under measure P . From
(11.27) we have

µ̃ = E[ln mT ] = −1

2

(
µ − r

σ

)2

T ,

σ̃ 2 = Var[ln mT ] =
(
µ − r

σ

)2

T .

Formula (11.30) implies

E[m1−1/γ
T ] = E[e(1−1/γ ) ln mT ]

= exp

(
1

2

(
1 − 1

γ

)(
µ − r

σ

)2

T

(
1 − 1

γ
− 1

))

= exp

(
− 1

2γ

(
1 − 1

γ

)(
µ − r

σ

)2

T

)
. (11.31)
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Table 11.1. Investment potential of dynamic trading strategies.

γ −1 1 3 ∞
IPγ 11.8% 13.3% 12.8% 12.5%

Finally, substitute (11.31) back into the expression for the investment potential
(11.29) and simplify:

IPγ = γ

(
exp

(
1

2γ

(
µ − r

σ

)2

T

)
− 1

)
. (11.32)

Assuming an annual Sharpe ratio of excess log return of 0.5 and a time horizon of
one year, which implies ((µ−r)/σ )2T = 0.25, we have the numerical values given
in Table 11.1. In particular, Exercise 11.10 shows that

IP∞ = 1

2

(
µ − r

σ

)2

T .

11.4 Risk-Neutral Pricing and Absence of Arbitrage

The analysis in Section 11.2.1 shows that the crucial step of risk-neutral pricing is
not the change of measure (step 3), which is in fact guaranteed by the Girsanov
theorem, but the ability to write

µt dt + σt dBt

as

rt dt + σt

(
µt − rt

σt

dt + dBt

)
,

that is, step 2 is critical for the functioning of the whole risk-neutral method described
above.

Can the second step fail? The answer is, only when there is arbitrage. Note that
the market price of risk ηt ,

ηt = µt − rt

σt

, (11.33)

is not defined when σt = 0. But if σt = 0, then the stock return is riskless at time t

and so the return on holding the stock from t to t +dt has to be equal to the risk-free
rate rt dt , otherwise arbitrage opportunities arise. Thus at any moment when σt = 0
one must have µt = rt and ηt can then be arbitrary, otherwise we set

ηt = µt − rt

σt

and the relationship
dSt

St

= rt dt + σt (ηt dt + dBt)

will still hold if there is no arbitrage.
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The situation is very similar when we have several correlated stocks. Suppose
the covariance matrix of three stock returns over time dt is

Σ dt =
⎡
⎣ 0.09 0.072 0.072

0.072 0.0676 0.0646
0.072 0.0646 0.0625

⎤
⎦ dt

and the mean rates of return are

E

[
dS1

S1

]
= 0.14 dt, E

[
dS2

S2

]
= 0.09 dt, E

[
dS3

S3

]
= 0.12 dt

with the safe rate of return r = 0.02.
Before we get to the heart of the argument, it is necessary to decompose the

stock returns into linearly independent components. By far the best way to achieve
this is to make the components uncorrelated. The decomposition process is not
complicated, but it requires more than one step and it has interesting ramifications;
we shall therefore relegate it to Section 11.9. Mathematically, we are performing a
Cholesky factorization of the covariance matrix Σ .

Having decomposed the stock returns we obtain

dS1

S1
= 0.14 dt + 0.3 dB1, (11.34)

dS2

S2
= 0.09 dt + 0.24 dB1 + 0.1 dB2, (11.35)

dS3

S3
= 0.12 dt + 0.24 dB1 + 0.07 dB2, (11.36)

where the Brownian increments dB1 and dB2 are uncorrelated. The number of
Brownian motions on the right-hand side of (11.34)–(11.36) signifies the number of
linearly independent stock returns.

In matrix notation the stock returns read
dS

S
= µ dt + σ dB, (11.37)

with

µ =
⎡
⎣0.14

0.09
0.12

⎤
⎦ , σ =

⎡
⎣ 0.3 0

0.24 0.1
0.24 0.07

⎤
⎦ .

In analogy with (11.33) we will try to solve the system µ − r = ση,⎡
⎣0.14 − 0.02

0.09 − 0.02
0.12 − 0.02

⎤
⎦ =

⎡
⎣ 0.3 0

0.24 0.1
0.24 0.07

⎤
⎦[η1

η2

]
.

The first equation gives
η1 = 0.4,

and the second equation then implies

η2 = −0.26.
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It is easy to verify that the third equation is not satisfied because

0.1 �= 0.24 × 0.4 − 0.07 × 0.26 = 0.0778.

Clearly, µ−r = ση cannot be solved. We claim that this happens because there is
arbitrage among the three stock returns. Let us now construct the arbitrage trading
strategy. The third asset is redundant relative to the first two and to replicate the
random part of the third return we will create a portfolio of the first two assets that
has the same factor loadings as the third asset. In other words we are looking for
portfolio weights α1, α2 such that⎡

⎣0.3 dB1 0.24 dB1

0 dB2︸ ︷︷ ︸
1st asset

0.1 dB2︸ ︷︷ ︸
2nd asset

⎤
⎦[α1

α2

]
=
⎡
⎣0.24 dB1

0.07 dB2︸ ︷︷ ︸
3rd asset

⎤
⎦ ,

which gives
α1 = 0.24, α2 = 0.7.

The randomness of the portfolio which invests 24 pence in the first stock and 70 pence
in the second stock is the same as the randomness of the portfolio that invests
100 pence in the third stock. A fortiori the portfolio

α1 = −0.24, α2 = −0.7, α3 = 1 (11.38)

is completely riskless. This portfolio costs −0.24 − 0.7 + 1 = 0.06; borrowing
6 pence from the bank would cost us 0.06 × 0.02 dt in interest payments. On the
other hand, the capital gain on the portfolio (11.38) is

dG = α1
dS1

S1
+ α2

dS2

S2
+ α3

dS3

S3

= −0.24 × 0.14 dt − 0.7 × 0.09 dt + 1 × 0.12 dt = 0.0234 dt.

Consequently, the portfolio (11.38) turns in a risk-free profit of

(0.0234 − 0.0012) dt = 0.0222 dt,

equivalent to 2.22 pence per unit of time.
Conversely, if the market price of risk equation

µ − r = ση (11.39)

has a solution (which is unique by construction of σ ), then there cannot be arbitrage
among the stock returns. To show this let us consider a portfolio α and its capital
gain α∗ dS/S. Substituting from (11.37) we have

dG = α∗ dS

S
= α∗µ dt + α∗σ dB.

Can it happen that the capital gain dG is riskless? Yes, but only when

α∗σ = 0. (11.40)

If α∗σ = 0 and there is no arbitrage, it must be true that the risk-free capital gain
α∗µ dt is the same as if we invested the same amount of money into the risk-free
bank account:

(α1µ1 + · · · + αmµm) dt = (α1 + · · · + αm)r dt. (11.41)



244 11. Continuous-Time Finance

However, equation (11.39) multiplied by α∗ from the left tells us that

α∗(µ − r) = α∗ση,

and if α∗σ = 0, then we obtain α∗(µ − r) = 0 as required by the no-arbitrage
condition (11.41).

Risk-neutral pricing with several risky assets

• Decompose m asset returns using the smallest necessary number of uncor-
related components dB1, . . . , dBn,

dSt

St

= µ dt + σ dBt .

In the absence of arbitrage there is a unique market price of risk vector η

corresponding to shocks dB1, . . . , dBn, satisfying

µ − r = ση.

• Now we can rewrite the asset returns in terms of n risk-neutral Brownian
motions dBQ,

dSt

St

= µ dt + σ dBt = r dt + (µ − r)︸ ︷︷ ︸
ση

dt + σ dBt (11.42)

= r dt + σ (η dt + dBt)︸ ︷︷ ︸
dBQ

t

and apply the Girsanov theorem to

dBQ
t = η dt + dBt .

• The multidimensional Girsanov theorem reads

dQ

dP
= mT = exp

(
−1

2

∫ T

0
η∗η dt −

∫ T

0
η∗ dBt

)
.

If Brownian motions B are uncorrelated under P , then the Brownian mo-
tions BQ are uncorrelated under Q and vice versa.

11.4.1 Example: Risk-Neutral Pricing with Two Stocks

Example 11.3. Find the risk-neutral SDEs for the stock prices if the stock returns
satisfy

dS1t

S1t
= 0.08 dt + 0.2 dB1t , (11.43)

dS2t

S2t
= 0.12 dt − 0.15 dB1t + 0.2 dB2t , (11.44)

with dB1t and dB2t uncorrelated. Assume that the risk-free rate is constant:

r = 0.02.
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Solution. In this case the two assets are clearly not perfectly correlated, hence
arbitrage is ruled out. Mathematically, σ is a 2×2 full rank matrix and therefore the
solution for η exists. Since there is no arbitrage, equation (11.42) tells us that we
can mechanically copy down (11.43) and (11.44), replacing P with Q and replacing
the drift terms with the risk-free rate:

dS1t

S1t
= 0.02 dt + 0.2 dBQ

1t ,

dS2t

S2t
= 0.02 dt − 0.15 dBQ

1t + 0.2 dBQ
2t .

11.4.2 Example: the Black–Scholes PDE

The no-arbitrage argument works for any collection of assets, not just stocks; in
this section we will apply it to stocks and options. Historically, the Black–Scholes
formula was derived using an arbitrage argument along the lines of (11.40) and
(11.41). Let us examine this argument in more detail.

The starting point of the derivation is to guess that the option price only depends
on the stock price and calendar time (in 1973 that was not at all obvious):

Ct = C(t, St ).

The capital gains from holding one unit of the option from t to t + dt are equal to
dCt ; from the Itô formula,

dCt = ∂C

∂t
dt + ∂C

∂St

dSt + 1

2

∂2C

∂S2
t

Vart (dSt )

=
(
∂C

∂t
+ σ 2S2

t

2

∂2C

∂S2
t

)
dt + ∂C

∂St

dSt . (11.45)

Let us construct a portfolio long one option and short θ stocks. The capital gains
on this portfolio are

dCt − θ dSt . (11.46)

Can we find θ such that the capital gains (11.46) are riskless? Substituting from
(11.45) we have

dCt − θ dSt =
(
∂C

∂t
+ σ 2S2

t

2

∂2C

∂S2
t

)
dt +

(
∂C

∂St

− θ

)
dSt . (11.47)

Since the only random part (as of time t) in (11.47) is dSt , to eliminate randomness
we must choose

θ = ∂C

∂St

, (11.48)

whereby the capital gains of our portfolio become(
∂C

∂t
+ σ 2S2

t

2

∂2C

∂S2
t

)
dt.

Because the capital gains are risk-free, in the absence of arbitrage they must equal
the interest earned on the value of our portfolio Ct − θSt in the risk-free bank
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account: (
∂C

∂t
+ σ 2S2

t

2

∂2C

∂S2
t

)
dt = (Ct − θSt )r dt. (11.49)

Substitution from (11.48) into (11.49) then yields the Black–Scholes partial differ-
ential equation,

∂C

∂t
+ rSt

∂C

∂St

+ σ 2S2
t

2

∂2C

∂S2
t

− rC = 0, (11.50)

from which the Black–Scholes formula was originally derived.

11.5 Automatic Generation of PDEs and the Feynman–Kac Formula

We have seen in Section 11.2.1 that pricing of contingent claims which have payoff
g(ST ) at maturity is straightforward when the risk-free rate and stock volatilities are
deterministic. In that case the expectation determining the price of the contingent
claim Ct ,

Ct = exp

(
−
∫ T

t

rs ds

)
EQ
t [g(ST )],

is easy to calculate because we can work out the risk-neutral distribution of the stock
prices, which happens to be lognormal. However, this is no longer true when either
the stock volatility or the risk-free rate are stochastic under the risk-neutral measure.
In such a case we may not know how to evaluate the expectation,

Ct = EQ
t

[
exp

(
−
∫ T

t

rs ds

)
g(ST )

]
, (11.51)

directly and at this point we may wish to construct a no-arbitrage partial differential
equation à la Black–Scholes PDE and compute the solution this way.

Specifically, suppose that the risk-neutral SDEs for stock price and risk-free rate
are

drt = µr(rt , St ) dt + σr(rt , St ) dBQ
t , (11.52)

dSt = µ(rt , St ) dt + σ(rt , St ) dBQ
t . (11.53)

Then by virtue of Proposition|10.4 the processes rt , St are jointly Markov under Q
and therefore Ct is a function of only rt , St and time t . One could construct the
no-arbitrage PDE for C(t, rt , St ) by following the no-arbitrage reasoning outlined
in Section 11.4.2, but this is hardly the most efficient method because the derivation
is long. Instead, there is a much faster way which uses the martingale properties of
the option price. This procedure is more direct and therefore more transparent, and
any errors in the derivation can be easily spotted.

We know that Ct/βt is a martingale under Q; we will therefore require

EQ
t

[
d

(
Ct

βt

)]
= 0. (11.54)

From the Itô formula (10.45),

d

(
Ct

βt

)
= 1

βt

(dCt − rCt dt). (11.55)
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Now use the Itô formula again to find dC(t, rt , St ) given (11.52) and (11.53),

dC =
(
∂C

∂t
+ ∂C

∂rt
µr + ∂C

∂St

µ + 1

2

(
∂2C

∂r2
t

σ 2
r + 2

∂2C

∂rt∂St

σrσ + ∂2C

∂S2
t

σ 2
))

dt

+
(
∂C

∂rt
σr + ∂C

∂St

σ

)
dBQ

t ,

which, together with the martingale condition (11.54) and the Itô formula (11.55),
yields the no-arbitrage PDE,

∂C

∂t
+ ∂C

∂rt
µr + ∂C

∂St

µ+ 1

2

(
∂2C

∂r2
t

σ 2
r +2

∂2C

∂rt∂St

σrσ + ∂2C

∂S2
t

σ 2
)

−rC = 0, (11.56)

with a boundary condition
C(T , r, S) = g(S). (11.57)

• The correspondence among the expectation (11.51), the SDEs for stock
price and interest rate (11.52) and (11.53), and the PDE (11.56) with bound-
ary condition (11.57) is called the Feynman–Kac formula.

• As an aside, with rt = 0 the interest rate ceases to be a state variable and
(11.56) simplifies to Kolmogorov’s backward equation:

∂C

∂t
+ ∂C

∂St

µ + 1

2

∂2C

∂S2
t

σ 2 = 0. (11.58)

• Both PDEs (11.56) and (11.58) reflect the fact that a certain process (Ct/βt

and Ct , respectively) is a martingale under measure Q.

The two ways of pricing derivative securities captured in (11.51)–(11.53) and
(11.56) and (11.57) are equivalent, yet they behave quite differently when used in
calculations. The next two sections highlight those differences. Suppose we are in
the Black–Scholes model,

d ln St = (r − 1
2σ

2) dt + σ dBQ
t , (11.59)

and that we wish to price a (slightly silly) derivative security called the squared log
contract, which pays (ln ST )

2 at maturity. Our problem leads to the calculation of

EQ[(ln ST )
2].

11.5.1 Example: Pricing with PDEs

A PDE expert, let us call him Mr Wilmott, would proceed as follows.
1. He would define the process X

Xt := EQ
t [(ln ST )

2],
and conclude by looking at (11.59) that ln St is a Markov process under Q

and therefore Xt depends on time and the current value of the stock St ,

Xt = X(t, ln St ).

X0 is what Mr Wilmott wishes to calculate.
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2. By virtue of the second martingale proposition the process X is a martingale
under Q. Mr Wilmott applies the Itô formula to find the drift of Xt and sets
it equal to 0 to obtain Kolmogorov’s backward equation:

∂X

∂t
+ ∂X

∂ ln S
(r − 1

2σ
2)︸ ︷︷ ︸

denote by µ

+1

2

∂2X

∂(ln S)2 σ
2 = 0, (11.60)

X(T , ln S) = (ln S)2. (11.61)

3. Mr Wilmott now needs to solve the PDE (11.60) with the boundary condition
(11.61). Being an experienced mathematician he guesses the solution is a
polynomial in ln S:

X(t, ln S) = a(t)(ln S)2 + b(t) ln S + c(t).

From the boundary conditions (11.61) he finds

a(T ) = 1, (11.62)

b(T ) = c(T ) = 0. (11.63)

Substituting this into Kolmogorov’s backward equation (11.60) he obtains

a′(t)(ln S)2 + (2a(t)µ + b′(t)) ln S + b(t)µ + a(t)σ 2 + c′(t) = 0,

which must hold for any S and any t . This is only possible if the time-
dependent coefficients standing by the different powers of ln S are all identi-
cally equal to 0,

a′(t) = 0, (11.64)

2a(t)µ + b′(t) = 0, (11.65)

b(t)µ + a(t)σ 2 + c′(t) = 0. (11.66)

Equation (11.64) means a(t) = const., and from the boundary condition
(11.62) that constant has to be 1:

a(t) = 1.

Next, from (11.65) and (11.63) one must have

b′(t) = −2µ,

b(t) =
∫ T

t

2µ dt = 2µ(T − t),

and finally (11.66) and (11.63) imply

c(t) = µ2(T − t)2 + σ 2(T − t).

Thus Mr Wilmott’s complete solution is

X(t, ln St ) = (ln St )
2 + 2µ(T − t) ln St + µ2(T − t)2 + σ 2(T − t),

(11.67)

µ = r − 1
2σ

2. (11.68)
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11.5.2 Example: Pricing with SDEs

Now let us meet Mr Filipović, who is an SDE expert. To find EQ
t [(ln ST )

2] Mr
Filipović begins by integrating the SDE (11.59),

ln ST = ln St + (r − 1
2σ

2)(T − t) + σ(B
Q
T − B

Q
t ),

whereby he realizes that conditional on the information at time t the distribution of
ln ST is normal

ln ST | Ft
Q∼ N(ln St + (r − 1

2σ
2)(T − t), σ 2(T − t)).

Mr Filipović knows the formula E[X2] = Var(X) + (E[X])2 and applies it with
X = ln ST ,

EQ
t [(ln ST )

2] = Vart (ln ST ) + (Et [ln ST ])2

= σ 2(T − t) + (St + (r − 1
2σ

2)(T − t))2,

which gives him the PDE result (11.67) with much less effort.

11.5.3 The Power of Stochastic Integration: an Example from the Vašı́ček Model

Inspired by the success of Mr Filipović let us try the stochastic integration method
on a harder problem from the theory of fixed-income securities. We wish to price a
pure discount bond with maturity T , which is a security that pays 1 at time T . Its
price at time 0 is therefore

bond0 = EQ

[
1

βT

]
= EQ[e− ln βT ].

The short rate in the Vašı́ček model follows the Ornstein–Uhlenbeck process:

drt = a(b − rt ) dt + σ dBQ
t . (11.69)

From Section 10.6.1 we know that (11.69) has a solution of the form

rT = b + (r0 − b)e−aT + σe−aT

∫ T

0
eas dBQ

s . (11.70)

For bond pricing it is important to know the distribution of the cumulative interest:

ln βT =
∫ T

0
rt dt.

Substituting for rt from (11.70) we obtain

ln βT =
∫ T

0

(
b + (r0 − b)e−at + σe−at

∫ t

0
eas dBQ

s

)
dt

=
∫ T

0
(b + (r0 − b)e−at ) dt + σ

∫ T

0

(∫ t

0
ea(s−t) dBQ

s

)
dt

= bT + (r0 − b)
1 − e−aT

a
+ σ

∫∫
0�t�T
0�s�t

ea(s−t) dBQ
s dt.
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To simplify the double integral, we will hold s constant and integrate over t first.
Formally, this is done by changing the order of integration (see Appendix A.6.5).
The double integral above can be written in two equivalent ways:∫∫

0�t�T
0�s�t

=
∫∫

0�s�T
s�t�T

.

Continuing with the latter we obtain∫∫
0�s�T
s�t�T

ea(s−t) dBQ
s dt =

∫ T

0

(∫ T

s

ea(s−t) dt

)
dBQ

s

=
∫ T

0

1 − ea(s−T )

a
dBQ

s .

In other words we have found a stochastic integral for the yield (ln βT )/T :

ln βT = bT + (r0 − b)
1 − e−aT

a
+ σ

∫ T

0
gt dBQ

t ,

gt = 1 − ea(t−T )

a
,∫ T

0
g2
t dt = (eaT − 2)2 + 2aT − 1

2a3 .

By virtue of (10.24) ln βT is distributed normally

ln βT
Q∼ N

(
bT + (r0 − b)

1 − e−aT

a
, σ 2 (e

aT − 2)2 + 2aT − 1

2a3

)
.

The bond price EQ[e− ln βT ] can now be calculated from the moment-generating
function (11.30) with X = ln βT and λ = −1 to obtain the Vašı́ček result. One can
imagine that it is much more demanding to infer the same result from the Feynman–
Kac PDE.

11.6 Overview of Numerical Methods

There are essentially three ways of evaluating the expectation (11.51) numerically.

1. If the interest rate or the stock price is strongly path dependent, that is, if more
and more state variables are needed to generate St+�t or rt+�t as t increases,
then it is best to evaluate (11.51) by a Monte Carlo experiment. In a Monte
Carlo experiment one uses a random number generator to simulate a large
number of paths, say a million, of a discrete-time version of the risk-neutral
Brownian motion BQ on the time interval [0, T ]. On each path one evaluates
the discretized value of the discounted payoff

exp

(
−
∫ T

0
rs ds

)
g(ST )

and then one computes the average of the discounted payoffs over all paths.
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2. If, on the other hand, the interest rate and stock price are (jointly) Markov
under Q, then it is more advantageous to construct a no-arbitrage partial
differential equation à la Black–Scholes PDE (11.50), because one only has
(apart from time) two state variables to contend with and the PDE can be
solved efficiently in the two-dimensional state space grid. PDEs are typically
solved by the finite-difference method (see Chapter 12).

3. In some cases one obtains a closed-form expression for the characteristic
function of log returns. Option prices can then be recovered numerically
from an integral akin to an inverse Fourier transform of the option payoff.

4. In the best case we are able to calculate the joint distribution of ST and βT

in closed form and the expectation can be computed either explicitly or by
numerical integration over the joint density.

11.7 Summary

• Asset pricing in the Brownian motion limit is based on two principles. The
first is general: the risk-neutral expectation of risky return must equal the risk-
free return. The second is specific to Itô processes: the change of measure
does not affect the conditional volatility of returns. In the Black–Scholes
model this means we can rephrase

dSt

St

= µ dt + σ dBt

as
dSt

St︸︷︷︸
risky rate
of return

= r dt︸︷︷︸
risk-free rate

of return

+ σ dBQ
t︸ ︷︷ ︸

volatility
unchanged

.

• The two equations above imply

dBQ = µ − r

σ
dt + dB.

The Girsanov theorem claims that (i) the only measure under which BQ is a
martingale is given by mT = dQ/dP with

mT = exp

(
−
∫ T

0

1

2

(
µ − r

σ

)2

dt −
∫ T

0

µ − r

σ
dBP

t

)
,

and (ii) BQ is a Brownian motion under Q, that is, VarQt (dBQ
t ) = dt .

• The same procedure works with multiple risky assets, provided that there
are no mispriced redundant assets. There can be no mispriced assets if the
conditional covariance matrix Σ dt of risky returns has full rank. Otherwise,
one has to perform Cholesky decomposition of the covariance matrix Σ =
σσ ∗ to see whether the linearly dependent securities are priced consistently
(see Section 11.9). In the absence of arbitrage the system of equations

µ − r = ση
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has a (unique) solution, the risk-neutral Brownian motions become

dBQ = η dt + dB

and the change of measure generalizes to

mT = exp

(
−
∫ T

0

1
2η

∗η dt −
∫ T

0
η∗ dBt

)
.

• Once we have characterized the risk-neutral SDE of the stock price the option
pricing is transformed into calculating expectations of the form

C0 = EQ

[
exp

(
−
∫ T

0
rs ds

)
g(ST )

]
.

There are effectively three ways of evaluating this expectation: (i) the Monte
Carlo simulation of risk-neutral shocks dBQ, (ii) solving the no-arbitrage
Feynman–Kac partial differential equation (numerically, this looks very much
like the binomial option pricing model), (iii) trying to work out the joint
distribution of ST and βT by stochastic integration (we have seen examples
in the derivation of the Black–Scholes and Vašı́ček models).

11.8 Notes

The geometric Brownian motion model of stock prices was proposed by Samuel-
son (1965). The martingale pricing method follows Duffie (1996); a concise and
clear presentation without digressions is in Baxter and Rennie (1996). Numerical
inversion of the characteristic function is applied, for example, in Heston (1993)
and Carr and Madan (1999). Glasserman (2003) is a comprehensive reference for
Monte Carlo techniques. Cholesky decomposition can be found in Judd (1998).
Björk (1998) is a good introduction to fixed-income models and it contains a PDE
derivation of bond prices in the Vašı́ček model.

11.9 Appendix: Decomposition of Asset Returns into
Uncorrelated Components

Let Y1, Y2, Y3 be three correlated asset returns with covariance matrix

ΣY =
⎛
⎝0.04 0.02 0.02

0.02 0.0676 0.0244
0.02 0.0244 0.0361

⎞
⎠ .

We are looking for uncorrelated random variables ε1, ε2, ε3 with unit variance, and
coefficients ⎛

⎝σ11 0 0
σ21 σ22 0
σ31 σ32 σ33

⎞
⎠
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such that

Y1 = σ11ε1, (11.71)

Y2 = σ21ε1 + σ22ε2, (11.72)

Y3 = σ31ε1 + σ32ε2 + σ33ε3. (11.73)

The procedure for finding σij resembles the Gramm–Schmidt orthogonalization
for vectors (see Section 2.14.2). In fact, it is the same procedure but instead of vectors
we have random variables and the right angle between two random variables Y1, Y2
is given by the condition Cov(Y1, Y2) = 0.

1. (a) The first component ε1 is simply Y1 normalized to have unit variance,√
Var(Y1)ε1 = Y1,

which implies
σ11 = √Var(Y1) = 0.2. (11.74)

(b) Once we know σ11 we can immediately work out σ21 and σ31 from the
fact that

σij = Cov(Yi, εj ). (11.75)

Equation (11.75) can be established by calculating the covariance with
εj on both sides of equations (11.71)–(11.73). Application of (11.75)
with j = 1 yields

σ21 = Cov(Y2, ε1) = Cov(Y2, Y1)

σ11
= 0.02

0.2
= 0.1, (11.76)

σ31 = Cov(Y3, ε1) = Cov(Y3, Y1)

σ11
= 0.02

0.2
= 0.1. (11.77)

2. (a) The second component ε2 is whatever is left over from Y2 once we take
away the part of Y2 which is perfectly correlated with ε1. In other words,
Y2 − σ21ε1 normalized by its standard deviation σ22 becomes ε2. We
know that Y2 = σ21ε1 + σ22ε2 and therefore

Var(Y2) = σ 2
21 + σ 2

22.

From here we can find σ22:

σ22 =
√

Var(Y2) − σ 2
21 =

√
0.0676 − 0.12 = 0.24. (11.78)

(b) Having found σ22 it is now possible to work out σ32 from the condition
(11.75),

σ32 = Cov(Y3, ε2) = Cov

(
Y3,

Y2 − σ21ε1

σ22

)
(11.79)

= Cov(Y3, Y2) − σ21 Cov(Y3, ε1)

σ22
, (11.80)

since we have already computed σ21 and Cov(Y3, ε1) = σ31 in the
previous step. Numerically,

σ32 = 0.0244 − 0.12

0.24
= 0.06. (11.81)
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3. Finally, we evaluate σ33 from the condition,

Var(Y3) = σ 2
31 + σ 2

32 + σ 2
33,

which yields

σ33 =
√

Var(Y3) − σ 2
31 − σ 2

32 =
√

0.0361 − 0.12 − 0.062 = 0.15.

11.9.1 Cholesky Decomposition

There is a simple relationship between the matrices σ and ΣY . By definition we
have

Y = σε, (11.82)

and by virtue of the portfolio rule for covariances (11.82) implies

ΣY = σΣεσ
∗. (11.83)

Since by assumption the ε shocks have unit variance and are uncorrelated, the
covariance matrix Σε is an identity matrix and (11.83) simplifies to

ΣY = σσ ∗. (11.84)

When, as in our case, σ is a lower triangular matrix, (11.84) is known as the
Cholesky decomposition of the matrix ΣY . The reader can verify that

σ =
⎛
⎝0.2 0 0

0.1 0.24 0
0.1 0.06 0.15

⎞
⎠

calculated in equations (11.74)–(11.81) satisfies equation (11.84).
All respectable numerical software packages have a routine that performs Choles-

ky decomposition. In MATLAB

chol(sigY)

will return the upper triangular matrix σ ∗ (see MATLAB program chapter11sect9a.
gss).

11.9.2 Redundant Assets

The Cholesky algorithm will break down when one of the assets Y1, Y2, Y3 is redun-
dant. For example, if Y2 is perfectly correlated with Y1, then in step (2b) we will find
σ22 = 0 and then we cannot compute σ32. The good news is that we do not need to.
Since ε2 is zero we can simply ignore it and proceed with calculating ε3 (and once ε3
is computed rename it ε2). The bad news is there are not many numerical packages
that perform the simple alteration in Cholesky decomposition to enable it to handle
perfectly correlated variables. If the reader wishes to locate such a procedure, it is
useful to know that a covariance matrix of linearly independent variables is positive
definite, whereas the covariance matrix of potentially linearly dependent variables is
positive semidefinite. We are after Cholesky decomposition for positive semidefinite
matrices; a functioning version can be found in the file chapter11sect9b.m.
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Redundant assets are an issue of great practical importance. An equity analyst
will work with large numbers of assets and there is every chance that not all of
them will be linearly independent. One way of dealing with this situation has been
suggested in the previous paragraph. Another possibility is to avoid the Cholesky
decomposition altogether. In practice, covariance matrices do not fall from the
sky like they sometimes do in textbooks. Instead, a covariance matrix would be
estimated from historical data. Suppose we have an N × 3 matrix Ydata containing
N observations of asset returns for three assets Y1, Y2, Y3. For simplicity suppose
that we have already preprocessed the data so that Ydata represents the deviations of
returns from their respective sample mean. Then the sample covariance matrix is
obtained simply as the matrix product

ΣY = Y ∗
dataYdata.

It is natural to perform the orthogonal decomposition directly on the columns of
the data matrix Ydata (see Section 2.15 for details). This will give

Ydata = QR

and
ΣY = R∗ Q∗Q︸ ︷︷ ︸

I

R = R∗R.

If the QR decomposition is performed without permuting columns of the data ma-
trix, we will find that R∗ = σ is the lower triangular matrix from the Cholesky
decomposition of the covariance matrixΣY . For an example see chapter11sect9c.m.

11.10 Exercises

Exercise 11.1 (return and yield). If the stock price is given by the following SDE,

dSt

St

= µ dt + σ dBt ,

and there are no dividends, then the parameter µ can be calculated as (circle one
answer)

(a) the yield calculated from expected return;
(b) the expected yield;
(c) none of the above.

Exercise 11.2 (Feynman–Kac formula). The stock price is given by the following
SDE,

dSt

St

= µ dt + σ dBt ,

where Bt is a Brownian motion under measure P and the short rate is constant at r ,
with βt = ert . Suppose we define

Xt

βt

= Et

[
ST

βT

]
.
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Then (circle one answer)

(a) Xt = X(t, St ), where

1
2σ

2S2 ∂
2X

∂S2 + µS
∂X

∂S
+ ∂X

∂t
= 0.

(b) Xt = X(t, St ), where

1
2σ

2S2 ∂
2X

∂S2 + (µ − r)S
∂X

∂S
+ ∂X

∂t
= 0.

(c) Xt = X(t, St ), where

1
2σ

2 ∂
2X

∂S2 + (r − 1
2σ

2)
∂X

∂S
+ ∂X

∂t
= 0.

(d) None of the above.

Exercise 11.3 (the multivariate Itô formula and the Girsanov theorem). You
are given an Itô process Xt ,

dXt = ηt dt + dBP
t ,

X0 = 0,

where Bt is a Brownian motion under measure P and ηt is a process adapted to the
filtration generated by B. There is also another Itô process mt ,

dmt = −ηtmt dBt , (11.85)

m0 = 1. (11.86)

(a) Which of the three processes Xt,mt , Bt are martingales under P ?
(b) Consider a new process Yt = X2

t − t . Using the Itô formula find the SDE for
the process Yt :

dYt =
(c) Use the multivariate Itô formula to find the SDE of the process mtYt . Is the

process mtYt a martingale under P ?

d(mtYt ) =
(d) Discuss the significance of your finding in part (c).

Exercise 11.4 (digital option pricing). Suppose you want to value a digital option
on the S&P500 Index. From the historical data you have estimated that the average
monthly return on the S&P500 is 1% and the standard deviation of this return is 4%.
You decide to model the S&P500 as a geometric Brownian motion with constant
parameters:

dXt

Xt

= µ dt + σ dBt .

Your expert on interest rates tells you that the rates will go up at a constant rate from
the current 5% to 7% over one year and then will stay at 7% indefinitely.
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(a) Find the correct value of µ and σ .

µ =
σ =

(b) Plot the evolution of the short rate.

(c) Calculate the cumulative discount βt = e
∫ t

0 rs ds .

βt =
(d) Write down the SDE for the index Xt using the risk-neutral Brownian motion:

dXt = dt + dBQ
t .

(e) From (d) find the SDE for ln Xt :

d ln Xt = dt + dBQ
t .

(f) Find the risk-neutral distribution of ln Xt , i.e. find the distribution of ln Xt

under measure Q.

(ln Xt |F0)
Q∼

(g) Price a digital option on the index with expiry date T and strike K = 1400.
Such an option pays £1 when XT > 1400 and 0 otherwise. Assume that
the current value of the index is X0 = 1400 and that the option matures in
12 months. (Hint: write the option price as an expectation. Realize that
this expectation is equal to a probability of an event. To find this probability
transform the event as we did when we looked for quantiles in Section B.11.)

Dt =
NB. You are pricing the option as if there were no dividends on the S&P500.
This is not the case, in practice, the earned dividends are calculated into the
monthly returns and the pricing then has to be adjusted accordingly.

Exercise 11.5 (quadratic call option in the Black–Scholes model). The commer-
cial bank Exotiq wants to sell a new derivative security, the quadratic call option.
If ST is the stock price at expiry, the quadratic call option with strike K will pay
max(S2

T − K2, 0). Suppose that stock returns follow a geometric Brownian motion
with an average rate of return equal to 8% per year and an annual volatility of log
return of 20% a year. The risk-free rate is 2% per annum, the contract expires in
one year and the initial stock price is 10. You have been hired as an analyst to price
the quadratic call option with strike 10. Proceed in steps.

(a) Write down the SDE for stock price using B, which is a Brownian motion
under the objective probability.

(b) Rephrase the same equation using BQ, which is a Brownian motion under the
risk-neutral probability.

(c) Find the risk-neutral distribution of ln ST as of time 0.
(d) Express the price of a quadratic call option as a risk-neutral expectation.
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(e) Evaluate this expectation using formulae (11.6) and (11.7). (Hint: write
S2
T = exp(2 ln ST ) and find the distribution of 2 ln ST .)

Exercise 11.6 (calculating expectations with PDEs and SDEs). Find

EQ[S2
T ]

if
dSt

St

= µ dt + σ dBQ
t .

Use

(a) the PDE martingale approach by setting Xt = EQ
t [S2

T ] and guessing that

Xt = X(t, St ) = S2
t ea(t),

where a(t) is a function of the calendar time only.
PDE for X:

a(t) =
(b) the SDE approach (by passing to ln St ):

ln ST | F0
Q∼

EQ[S2
T ] = EQ[e2 ln ST ] =

Exercise 11.7 (pricing bonds with PDEs in a Gaussian model of term structure).
Consider a term-structure model with stochastic interest rates:

drt = 0.01 dt + 0.1 dBQ
t , (11.87)

r0 = 0.1,

βt = exp

(∫ t

0
ru du

)
.

Suppose we want to price a zero coupon bond in this model. Such a bond pays 1
at maturity; if the interest rate were deterministic, the price of the bond would be 1
discounted back at the risk-free rate, X0 = 1/βT , and intermediate prices would be

Xt = 1

exp(
∫ T

t
ru du)

= βt

βT

. (11.88)

However, since r is stochastic the deterministic formula (11.88) changes to

Xt = EQ
t

[
βt

βT

]
= EQ

t

[
exp

(∫ T

t

ru du

)]
. (11.89)

The task is to find the PDE that the bond price must satisfy, proceeding in steps.

(a) Denote the bond price process by X. Looking at the equation (11.89) and
using the Markov properties of process r , decide which variables Xt depend
upon (apart from the calendar time):

Xt = X(t, ).
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(b) Using (a) and the Itô formula write down the SDE for the discounted bond
price Xt/βt :

d

(
Xt

βt

)
=

(c) Assuming that BQ is a Brownian motion under the risk-neutral measure, write
down the PDE which captures the fact that Xt/βt is a martingale under the
risk-neutral measure:
PDE for X:

(d) Write down the boundary condition for the function X (stating that XT = 1):

X( , ) =
Exercise 11.8 (Gaussian model of term structure and bond pricing using SDEs).
Take the same model as above

drt = 0.01 dt + 0.1 dBQ
t ,

r0 = 0.1,

where r is the overnight interest rate on bank deposits. Denote by y(t, T ) the
cumulative interest on bank account deposits from time t to time T ,

y(t, T ) =
∫ T

t

ru du. (11.90)

Our aim is to find the price of a zero coupon discount bond in this model

X0 = EQ

[
1

βT

]
= EQ[e−y(0,T )].

(a) Express ru as an Itô integral from time 0:

ru = r0+
(b) Substitute ru into the formula for the compounded interest rate with (11.90)

and change the order of integration to obtain an Itô integral for the cumulative
interest y(0, T ).

(c) Describe the risk-neutral distribution of y(0, T ) as perceived at time 0.

y(0, T )
Q∼

(d) Using the result in (c) calculate X0 = EQ[e−y(0,T )].
Exercise 11.9 (relationship between PDEs and SDEs). Proceed as in Exercise11.8
above.

(a) Describe the distribution of y(t, T ) as seen at an intermediate time t .
(b) Find the no-arbitrage price Xt of a pure discount bond maturing T years from

now at any intermediate time t , 0 < t < T .
(c) Note thatXt is a function of t and rt only (takingT as given). Plug this function

X(t, rt ) into the PDE derived in Exercise 11.7. What do you observe?
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Exercise 11.10 (limiting value of investment potential). Write down a first-order
Taylor expansion of eax − 1 around x = 0 and use it to prove that

lim
x→0

eax − 1

x
= a.

Consequently, show that for IPγ given in (11.32) we have

lim
γ→∞ IPγ = 1

2

(µ − r)2

σ 2 .

Exercise 11.11 (stock return correlation). For the two stock returns in Sec-
tion 11.4.1 evaluate the instantaneous correlation between stock returns under both
P and Q.



12
Finite-Difference Methods

We have seen in Chapter 11 how one can construct partial differential equations
(PDEs) that capture the price of a given derivative security. The purpose of this
section is to introduce the reader to a class of numerical methods that can be used
to solve such PDEs numerically. The idea behind finite-difference methods is to
set up a grid for the state variables and approximate the partial derivatives in the
PDE by differences on the grid. We will discuss (a) explicit finite difference and
(b) implicit finite difference, where the latter is subdivided into (i) fully implicit and
(ii) Crank–Nicolson schemes. The schemes differ by their numerical stability, rate
of convergence and speed of execution. We will discuss how these three attributes
depend on the PDE itself and how to construct the ‘best’ PDE for a given pricing
problem. We will further highlight how the positioning of the grid points affects the
numerical stability and rate of convergence and how one can speed up convergence
by extrapolation. Last but not least, we will contrast finite-difference schemes with
well-known binomial and trinomial lattices.

Numerical examples in this chapter are based on options in the Black–Scholes
model. The more interesting case ofAsian options is discussed in the end-of-chapter
exercises. These exercises are recommended to acquire deeper understanding of
finite-difference schemes.

12.1 Interpretation of PDEs

Suppose now that having applied suitable transformations we have arrived at the
following PDE describing function g(t, x):

0 = ∂g(t, x)

∂t
+ b(t, x)

∂g(t, x)

∂x
+ 1

2c(t, x)
∂2g(t, x)

∂x2 . (12.1)

Example 12.1. We already noted in Chapter 11 that PDEs generally express the
martingale property of a certain process as a function of certain state variables under
a suitably chosen measure. Here the martingale is the process g(t, Xt ). Can you
write down the drift and volatility of process X as implied by the PDE (12.1)?

Solution. Denote the chosen measure by P and assume that dXt = µt dt + σt dBt .
The Itô formula yields

dg(t, Xt ) =
(
∂g

∂t
+ 1

2

∂2g

∂X2
t

σ 2
t

)
dt + ∂g

∂Xt

dXt .

Heqing

Heqing

Heqing
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h 

t

x

δ

Figure 12.1. A uniformly spaced grid.

On taking the conditional expectation on both sides we obtain

0 = Et [dg(t, Xt )] =
(
∂g

∂t
+ 1

2

∂2g

∂X2
t

σ 2
t

)
dt + ∂g

∂Xt

µt dt, (12.2)

where the first equality follows from g being a P -martingale. On comparing (12.2)
with (12.1) we conclude that b(t, Xt ) is the P -drift of X and that

√
c(t, Xt ) is the

volatility of X.

12.1.1 Choice of State Variables

Consider a European call option with strike K . In the Black–Scholes model it is
convenient to choose X = ln S, which leads to constant drift and volatility:

dX = (r − σ 2/2) dt + σ dBQ.

For the martingale quantity we will choose EQ
t [(ST − K)+] = EQ

t [(eXT − K)+].
Since X is a Markov process under Q there must be a function g(t, x) such that

g(t, Xt ) = EQ
t [(eXT − K)+]. (12.3)

This quantity is a Q-martingale by Proposition 9.2. We can interpret g(t, Xt ) as
the forward price of the option. The forward price is the amount of money we
agree to pay to the writer of the option at time T in exchange for receiving the
option at time t . The current price of the option is easily obtained by discounting:
Ct = g(t, Xt )/er(T−t).

12.1.2 Grid Construction

For simplicity we will consider a uniformly spaced grid with step δ in the t coordinate
and step h in the x coordinate, as depicted in Figure 12.1.

It is common to measure time in years. The choice of δ = 1/250 would therefore
correspond to a time step of one trading day. The interpretation of h depends on
the choice of X. With X = ln S the choice of h = 0.01 corresponds approximately
to a 1% increase in the stock price level between neighbouring grid points (see
Example A.9).
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The decision of where to truncate the grid is aimed at controlling the probability
that the state variable X is outside the grid at time T . With X = ln S one typically
considers the interval (ln S0 − ζσ

√
T , ln S0 + ζσ

√
T ), where ζ � 5. If we centre

the grid at ln S0 and denote the number of nodes in the spatial dimension by N , then

N = 2

⌈
ζσ

√
T

h

⌉
+ 1.

The expression �x� denotes the nearest integer to x that is greater than or equal to
it. We will denote the grid values of the state variable X by x1 > x2 > · · · > xN .

12.1.3 Boundary Conditions

The pricing of plain vanilla options in binomial or trinomial lattices requires speci-
fication of the option payoff only at maturity T . This value is easily obtained from
(12.3):

g(T , x) = (ex − K)+. (12.4)

In contrast with binomial and trinomial lattices, which are triangular in shape, finite-
difference grids are rectangular and specification of the option price at all interme-
diate times at the top and bottom edge of the grid is therefore required. This may
at first seem like a nuisance, but it is in fact a very clever arrangement because
the resulting grid in a finite-difference scheme is typically much smaller than the
corresponding binomial lattice.

The boundary conditions at the top of the grid correspond to the forward price of
a deep-in-the-money option. Such an option is unlikely to be worthless on expiry
and therefore its forward price is approximately equal to

EQ
t [eXT − K] = EQ

t [ST − K]
= er(T−t)St − K

= er(T−t)eXt − K.

The corresponding boundary condition reads

g(t, x1) = er(T−t)ex1 − K, (12.5)

where x1 is the highest node on the spatial axis.
At the bottom of the grid the option is deep out of the money and it is likely to be

worthless on expiry, therefore the boundary condition reads

g(t, xN) = 0. (12.6)

12.2 The Explicit Method

Let us approximate ∂g/∂t by a backward difference, ∂g/∂x by a central difference
and, finally, ∂2g/∂x2 by a symmetric central difference, all three relative to the



264 12. Finite-Difference Methods

reference point (t + δ, x):

∂g(t + δ, x)

∂t
= g(t + δ, x) − g(t, x)

δ
+ O(δ), (12.7)

∂g(t + δ, x)

∂x
= g(t + δ, x + h) − g(t + δ, x − h)

2h
+ O(h2), (12.8)

∂2g(t + δ, x)

∂x2 = g(t + δ, x + h) − 2g(t + δ, x) + g(t + δ, x − h)

h2 + O(h2).

(12.9)

The precision of the finite differences can be derived by Taylor expansion, as dis-
cussed in Appendix A. Once the finite differences are substituted into the original
PDE (12.1) we obtain

g(t, x) = g(t + δ, x)

(
1 − c(t + δ, x)

δ

h2

)

+ g(t + δ, x + h)

(
c(t + δ, x)

2

δ

h2 + b(t + δ, x)
δ

2h

)

+ g(t + δ, x − h)

(
c(t + δ, x)

2

δ

h2 − b(t + δ, x)
δ

2h

)
. (12.10)

The last equation resembles an expectation, and this does not happen by accident.
If we define the probabilities of up, middle and down moves by

pu = c(t + δ, x)

2

δ

h2 + b(t + δ, x)
δ

2h
, (12.11)

pm = 1 − c(t + δ, x)
δ

h2 , (12.12)

pd = c(t + δ, x)

2

δ

h2 − b(t + δ, x)
δ

2h
, (12.13)

then by construction we have pu + pm + pd = 1. For reasons made clear in
Section 12.4 we call pu, pm and pd the transition probabilities. These probabilities
play a crucial role in the stability of finite-difference schemes.

A MATLAB function implementation of the explicit method in the Black–Scholes
model with X = ln S and with boundary conditions (12.4), (12.5) and (12.6) is
available in MATLAB file BSCallEFD.m.

12.3 Instability

It turns out that the finite-difference methods, both implicit and explicit, are numer-
ically stable only if the transition probabilities, which in the explicit case are given
by (12.11)–(12.13), are positive. This is easy to establish experimentally (see the
end-of-chapter exercises), but hard to prove mathematically. The numerical insta-
bility often results in outputs of implausible magnitude and/or of the wrong sign,
and is therefore easy to spot. It is better, however, not to rely on visual checks and
to make sure that stability is built into any pricing algorithm.
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12.3.1 Upwind Differences

The positivity of pu, pd may be difficult or impossible to achieve when the drift
term b(t, x) dominates the diffusion term c(t, x). In such cases it is better to use
‘upwind’ differences:

∂g(t + δ, x)

∂x
= g(t + δ, x + h) − g(t + δ, x)

h
+ O(h) for b(t + δ, x) > 0,

(12.14)

∂g(t + δ, x)

∂x
= g(t + δ, x) − g(t + δ, x − h)

h
+ O(h) for b(t + δ, x) < 0.

(12.15)

These lead to a slower convergence (notice the O(h) term in equations (12.14),
(12.15) instead of the O(h2) term in equation (12.8)) but guarantee that pu, pd > 0.
Specifically, after substituting the upwind differences into the PDE we obtain

0 = g(t + δ, x) − g(t, x)

δ
+ b+(t + δ, x)

g(t + δ, x + h) − g(t + δ, x)

h

− b−(t + δ, x)
g(t + δ, x) − g(t + δ, x − h)

h

+ c(t + δ, x)

2

g(t + δ, x + h) − 2g(t + δ, x) + g(t + δ, x − h)

h2 ,

which can be rearranged to read

g(t, x) = g(t + δ, x)

(
1 − c(t + δ, x)

δ

h2 − |b(t + δ, x)| δ
h

)
︸ ︷︷ ︸

pm

+ g(t + δ, x + h)

(
c(t + δ, x)

2

δ

h2 + b+(t + δ, x)
δ

h

)
︸ ︷︷ ︸

pu

+ g(t + δ, x − h)

(
c(t + δ, x)

2

δ

h2 + b−(t + δ, x)
δ

h

)
︸ ︷︷ ︸

pd

.

Example 12.2. In the Black–Scholes model with X = ln S and with Q being the
martingale measure, examine the stability condition pu > 0, pd > 0 with pu, pd
given in (12.11), (12.13)

Solution. By Example 12.1 we have b(t, x) = r − 1
2σ

2, c(t, x) = σ 2 and the
conditions pu > 0, pd > 0 require

h < σ 2/|r − 1
2σ

2|.
For typical values of the parameters the upper bound is more than 1

2 , and is therefore
not binding (in practice we need roughly h = 0.01). We conclude that upwind
differences are not required in this version of the Black–Scholes PDE.
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Table 12.1. Option price as a function of spatial step h in the explicit method. Parameter
values: r = 0.04, σ = 0.3, δ = 1/250, S0 = K = 100, T = 1. Exact option price 13.7533.

h C0 pm

0.01 −1.0 × 10196 −2.6
0.015 −4.3 × 1083 −0.6
0.018 85 6.1299 −0.013
0.02 13.7522 0.1

12.3.2 Martingale State Variable

The positivity of pu, pd will not become an issue if the state variable X is itself a
martingale (b = 0). This is yet another reason why martingales are important: if X
is a martingale, then the standard explicit scheme is stable (provided pm > 0) and
we obtain fast convergence (quadratic in spatial step h); when X is not a martingale,
we may be forced to use upwind differences, which result in slower convergence
(linear in h).

12.3.3 Choice of Time Step

We observe, however, that even if we choose upwind differences or make sure that X
has zero drift, the explicit method will become unstable as soon as δc(t+δ, x) < h2,
because then pm < 0. In the Black–Scholes model with X = ln S, stability requires

σ
√
δ < h.

This means that if we pick h = 0.01 and σ = 0.4, the longest time step we can take
is 1/1600, which corresponds to trading 1600 times a year (roughly once an hour,
with 250 working days and 8 working hours a day). If we were to halve the spatial
step, we would have to make the time step four times smaller, in order to maintain
stability.

Table 12.1 shows the numerical output of the function BSCallEFD.m for different
choices of the spatial step h.

12.4 Markov Chains and Local Consistency

In this section we will provide an alternative interpretation of the explicit method that
helps us to understand common features of finite-difference schemes and binomial
and trinomial pricing models. We can think of the discrete grid in Figure 12.1 as a
discrete approximation to process X. Equation (12.10) suggests that the node (t, x)

is connected with three other nodes, as shown in Figure 12.2. The transition occurs
with probabilities pu, pm, pd, which are given in equations (12.11)–(12.13).

Let us now examine the conditional mean and variance of the approximated
variables. We will denote the approximated process by X̂ and the approximated
time by t̂ . The time change is deterministic: �t̂ = δ. For the expected change in X̂
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pu

pm

pd

(t, x)

(t +  , x + h)δ

(t +  , x)δ

(t +  , x − h)δ

Figure 12.2. Markov chain approximation to a diffusion dXt = b(t, Xt ) dt +√
c(t, Xt ) dBt . Transition probabilities are given in equations (12.11)–(12.13).

we have

Et [�X̂t ] = puh + pm0 + pd(−h)

= b(t + δ, X̂t )δ = b(t, X̂t )δ + o(δ), (12.16)

where the second equality follows by substituting from (12.11)–(12.13). The con-
ditional variance reads

Vart (�X̂t ) = Et [(�X̂t )
2] − (Et [�X̂t ])2

= puh
2 + pm02 + pd(−h)2 − (b(t + δ, X̂t )δ)

2

= c(t + δ, X̂t )δ − (b(t + δ, X̂t )δ)
2

= c(t, X̂t )δ + o(δ). (12.17)

Recall from Example 12.1 that the drift of X equals b(t, Xt ) and the volatility equals√
c(t, Xt ).

Definition 12.3. Let X be a diffusion with drift b(t, X) and volatility
√
c(t, X) and

let (t̂ , X̂) be a Markov chain on a uniform grid with spacing (δ, h). We say that the
Markov chain (t̂ , X̂) is locally consistent with (t, X) if for �t := Et [�t̂ ] one has

Vart (�t̂ ) = o(�t),

Et [�X̂t ] = b(t, X̂t )�t + o(�t),

Vart (�X̂t ) = c(t, X̂t )�t + o(�t),

as δ, h → 0.

Somewhat surprisingly, the definition says that the approximated time variable
can be random. But it also says that t̂ cannot be ‘too random’ in the sense that its
mean must be much larger than its variance as δ, h → 0. Random approximation
of the time variable is a feature typical of implicit finite-difference schemes.

We conclude from (12.16) and (12.17) that the discrete approximation of (t, X)

depicted in Figure 12.2 is locally consistent. The time increment is in fact deter-
ministic, �t = �t̂ = δ, which is typical for explicit schemes. The conditional
mean and variance of �X̂t taken from the chain have the correct value to the first
order in �t . It is an important result in the Markov chain approximation literature
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Figure 12.3. Option price C0(α
2δ, αh) calculated by the explicit finite-difference scheme,

as a function of the grid spacing parameter α. Parameter values: r = 0, σ = 0.2, δ = 0.05,
h = 0.1, S0 = K = 100, T = 1.

that expectations computed on any locally consistent Markov chain approximation
will converge to the correct value E[g(T ,XT )] generated by the continuous-time
process as δ, h → 0. Thus one can and should view finite-difference methods as
special cases of the more general Markov chain approximation method. This is
highlighted in Exercise 12.2, where we examine local consistency of the Cox et al.
(1979) binomial lattice.

12.5 Improving Convergence by Richardson’s Extrapolation

Denote by C0(δ, h) the option price as a function of the grid spacing and denote
by C0 the true value. The explicit finite-difference scheme converges linearly in
time (parameter δ) and quadratically in space (parameter h), which can be seen by
examining the error terms in (12.7)–(12.9). Thus we expect the error C0(δ, h)−C0
to be approximately four times smaller than the error C0(4δ, 2h) − C0, i.e.

C0(δ, h) − C0 ≈ C0(4δ, 2h) − C0

4
. (12.18)

The actual convergence pattern is depicted in Figure 12.3.
The purpose of extrapolation is to exploit the regular pattern in Figure 12.3 to

find a better estimate of C0 without recalculating the finite-difference scheme on a
denser grid. Intuitively this is achieved by solving for C0 in equation (12.18). By
doing so we obtain so-called Richardson’s extrapolation:

C0 ≈ 4C0(δ, h) − C0(4δ, 2h)

3
.

Further background to Richardson’s extrapolation is given in Section 12.12. Ta-
ble 12.2 shows the improvement in precision resulting from extrapolation. Note
that the computational effort of extrapolation is negligible.
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Table 12.2. The option price as a function of grid spacing. Parameter values:
r = 0, σ = 0.2, δ = 1/2000, h = 0.01, S0 = K = 100, T = 1.

C0(4δ, 2h) C0(δ, h)
1
3 (4C0(δ, h) − C0(4δ, 2h)) Exact value

7.957 436 7.965 042 7.965 570 7.965 567

Table 12.3. The option price as a function of grid spacing. Non-monotonic convergence
due to strike misalignment. Parameter values: r = 0, σ = 0.2, δ = 1/2000, h = 0.01,
S0 = 100, K = 97, T = 1.

C0(4δ, 2h) C0(δ, h)
1
3 (4C0(δ, h) − C0(4δ, 2h)) Exact value

9.438 35 9.435 04 9.433 94 9.436 59
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9.42
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Figure 12.4. The oscillatory nature of option price C0(α
2δ, αh) calculated by the explicit

finite-difference scheme, as a function of grid spacing parameter α. Parameter values: r = 0,
σ = 0.2, δ = 0.05, h = 0.1, S0 = 100, K = 97, T = 1.

12.6 Oscillatory Convergence Due to Grid Positioning

The extrapolation technique will lead to an improvement only if the convergence is
monotone. Let us consider the same pricing problem as before, but now we change
the strike price by a small amount from K = 100 to K = 97. Now the extrapolation
makes things worse, as can be seen in Table 12.3.

The deterioration stems from the oscillation in price as a function of grid spacing,
which is evident in Figure 12.4. The oscillation itself is caused by the positioning
of grid points relative to the strike value. The construction of the grid is such that
we always have a grid point at S0. This causes monotone convergence for K = S0.
However, when K �= S0 the positioning of the grid points relative to the strike value
changes with the change in grid spacing. This causes unpredictable oscillation in
the price.
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Table 12.4. The option price as a function of grid spacing. Monotonic convergence restored
after careful placement of grid points. Parameter values: r = 0, σ = 0.2, δ = 1/2000,
h = 0.01, S0 = 100, K = 97, T = 1.

C0(4δ, 2h) C0(δ, h)
1
3 (4C0(δ, h) − C0(4δ, 2h)) Exact value

9.428 700 9.434 618 9.436 591 9.436 589

1 2 3 4 5 6 7 8 9 10
9.2

9.3

9.4

Pr
ic

e

1/α

9.5

Figure 12.5. Monotone convergence of the option price is restored by positioning a grid
point at the strike value. Plot depicts the option price C0(α

2δ, αh) calculated by the explicit
finite-difference scheme, as a function of grid spacing parameter α. Parameter values: r = 0,
σ = 0.2, δ = 0.05, h = 0.1, S0 = 100, K = 97, T = 1.

The remedy is to shift the grid points so that one grid point at time T always
coincides with K . This can be done either by shifting the entire grid (in which case
S0 is no longer on the grid in general) or just by shifting the grid values at T . The
first choice is slightly easier to code. It is implemented in the MATLAB function
BSCallEFD2.m. Numerical results are available in Table 12.4, and the restored
monotonicity can be verified in Figure 12.5.

12.7 Fully Implicit Scheme
We have seen that explicit schemes require very short time steps to ensure stability.
Implicit schemes are designed to overcome this problem. The difference between
the explicit and the fully implicit scheme is in the reference point, which now
becomes (t, x), and in the computation of ∂g/∂t , which is now evaluated by forward
difference:

∂g(t, x)

∂t
= g(t + δ, x) − g(t, x)

δ
+ O(δ), (12.19)

∂g(t, x)

∂x
= g(t, x + h) − g(t, x − h)

2h
+ O(h2), (12.20)

∂2g(t, x)

∂x2 = g(t, x + h) − 2g(t, x) + g(t, x − h)

h2 + O(h2). (12.21)
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The PDE (12.1) together with (12.19)–(12.21) yields

g(t, x) = g(t + δ, x)
1

β(t, x)
+ g(t, x + h)

α(t, x)

β(t, x)
+ g(t, x − h)

γ (t, x)

β(t, x)
, (12.22)

with

α(t, x) = c(t, x)

2

δ

h2 + b(t, x)
δ

2h
,

β(t, x) = 1 + c(t, x)
δ

h2 ,

γ (t, x) = c(t, x)

2

δ

h2 − b(t, x)
δ

2h
.

The expression above suggests transition probabilities

pu = α(t, x)

β(t, x)
, (12.23)

pm = 1

β(t, x)
, (12.24)

pd = γ (t, x)

β(t, x)
, (12.25)

corresponding to the state transitions in Figure 12.6. Note that no matter how long a
time step we choose, the transition probability pm can never become negative. Pos-
itivity of pu, pd can be ensured, as in the explicit case, by using upwind differences,
or by making sure that X is a martingale.

12.7.1 Implementation of the Implicit Scheme

Let us denote the vector of g values at time j by gj . The spatial dimension is
indexed 1, . . . , N . Please recall that we assume that x1 > x2 > · · · > xN , which
means that if g(t, x) corresponds to g

j
k , then g(t, x + h) corresponds to g

j
k−1 and

not to g
j
k+1. In this more compact notation equation (12.22) can be rearranged to

read
−α

j
k g

j
k−1 + β

j
k g

j
k − γ

j
k g

j
k+1 = g

j+1
k .

In matrix notation g
j
1 and g

j
N are given by the boundary conditions (12.5), (12.6),

while g
j
2:N−1 is obtained from g

j+1
2:N−1 by solving the tridiagonal system⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
j
2 −γ

j
2 0 · · · 0

−α
j
3 β

j
3 −γ

j
3

. . .
...

0 −α
j
4

. . .
. . . 0

...
. . .

. . . β
j
N−2 −γ

j
N−2

0 · · · 0 −α
j
N−1 β

j
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

g
j
2:N−1 = g

j+1
2:N−1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

α
j
2g

j
1

0
...

0

γ
j
N−1g

j
N

⎤
⎥⎥⎥⎥⎥⎥⎦

=: g̃j+1. (12.26)

This system can be solved efficiently by sparse Gaussian elimination, which is
discussed in Appendix 12.11. The computation time grows only linearly with N ,
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pu
pm

pd
(t, x)

(t, x + h)

(t +  , x)δ

(t, x − h)

Figure 12.6. Markov chain transitions generated by an implicit finite-difference method.

and it is therefore comparable with the explicit scheme. The fully implicit scheme
is implemented in the MATLAB function BSCallIFD.m.

12.7.2 The Implicit Scheme as a Markov Chain

Recall the transition probabilities (12.23)–(12.25) and the transition equation
(12.22). A particular feature of the implicit scheme is that time does not always
move forward; it will advance by δ with probability 1/β(t, x) but with the remain-
ing probability it will not move at all. The perceived average time movement is

�t := Et [�t̂ ] = 0pu + δpm + 0pd = δ

1 + c(t, x)(δ/h2)
.

Importantly, the variance of the time movement is so small that it will vanish asymp-
totically as h, δ → 0, so that we will end up with a time variable that is deterministic
in the limit:

Vart (�t̂ ) = Et [(�t̂ )2] − (Et [�t̂ ])2

= δ2pm − δ2p2
m = (δpm)δ(1 − pm)

= �tδ(1 − pm) = o(�t).

The purpose of modelling time as a slightly random variable is to make the perceived
time step �t shorter than the time step δ on the grid, which then allows one to choose
a coarser time grid and to speed up calculations as a result.

Another way to think about the implicit scheme is by turning it into an explicit
scheme. This is done by inverting the system (12.26) to obtain

g
j
2:N−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
j
2 −γ

j
2 0 · · · 0

−α
j
3 β

j
3 −γ

j
3

. . .
...

0 −α
j
4

. . .
. . . 0

...
. . .

. . . β
j
N−2 −γ

j
N−2

0 · · · 0 −α
j
N−1 β

j
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

g̃j+1.

Roughly speaking, the kth row of the inverse matrix contains transition probabilities
from spatial state k at time j to spatial states 2 : 2N at time j + 1. The inverse
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matrix is no longer tridiagonal, meaning that each state at time j is connected to
every state at time j + 1. The explicit method, by contrast, is trinomial.

12.8 Crank–Nicolson Scheme

The Crank–Nicolson scheme (proposed by British mathematicians John Crank and
Phyllis Nicolson just after the World War II) shares the main features of the fully
implicit method, such as stability, but it leads to faster convergence (quadratic in
time and space). This result is achieved by considering a reference point (t+δ/2, x)
that is not on the grid. ∂g/∂t is evaluated by central difference, while the spatial
derivatives can be seen as the average of the finite differences in the explicit method
and the fully implicit methods:

∂g(t + δ/2, x)

∂t
= g(t + δ, x) − g(t, x)

δ
+ O(δ2),

∂g(t + δ/2, x)

∂x
b(t + δ/2, x)

= 1

2

g(t, x + h) − g(t, x − h)

2h
b(t, x)

+ 1

2

g(t + δ, x + h) − g(t + δ, x − h)

2h
b(t + δ, x)

+ O(δ2) + O(h2),

∂2g(t + δ/2, x)

∂x2 c(t + δ/2, x)

= 1

2

g(t, x + h) − 2g(t, x) + g(t, x − h)

h2 c(t, x)

+ 1

2

g(t + δ, x + h) − 2g(t + δ, x) + g(t + δ, x − h)

h2 c(t + δ, x)

+ O(δ2) + O(h2).

These must be substituted into the relevant PDE, in our case (12.1), to obtain a
modified tridiagonal system which is solved in the same way as the system generated
by the fully implicit method. Specifically, we have to solve⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
j
2 −γ

j
2 0 · · · 0

−α
j
3 β

j
3 −γ

j
3

. . .
...

0 −α
j
4

. . .
. . . 0

...
. . .

. . . β
j
N−2 −γ

j
N−2

0 · · · 0 −α
j
N−1 β

j
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g
j
2:N−1 = g̃j+1,
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g̃j+1 := α
j+1
2:N−1g

j+1
1:N−2 + (2 − β

j+1
2:N−1)g

j+1
2:N−1 + γ

j+1
2:N−1g

j+1
3:N +

⎡
⎢⎢⎢⎢⎢⎢⎣

α
j
2g

j
1

0
...

0

γ
j
N−1g

j
N

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where the coefficients α, β, γ are given by

α(t, x) = c(t, x)

4

δ

h2 + b(t, x)
δ

4h
,

β(t, x) = 1 + c(t, x)

2

δ

h2 ,

γ (t, x) = c(t, x)

4

δ

h2 − b(t, x)
δ

4h
.

We notice thatα and γ are halved compared with the fully implicit method. Since the
scheme converges quadratically in both time and space, Richardson’s extrapolation
formula (12.18) changes to

C0 ≈ 4C0(δ, h) − C0(2δ, 2h)

3
. (12.27)

The Crank–Nicolson scheme is implemented in MATLAB function BSCallCN.m.
Table 12.5 gives an indication of the speed and accuracy of the three finite-

difference schemes implemented in MATLAB.

12.9 Summary

• A pricing PDE reflects the fact that some price-related quantity (target func-
tion) as a function of certain state variables is a martingale under a suitably
chosen measure. The three main ingredients can be varied by methods in-
troduced in Chapter 11. Particularly for exotic options (Asian options for
example), a suitable choice of the target function in combination with the
choice of the martingale measure can help to reduce the number of state
variables.

• A careful choice of state variables may facilitate numerical computations.
For example, in the Black–Scholes model ln S is preferred to S because the
former has constant drift and volatility.

• Finite-difference schemes become unstable when the drift coefficient in the
PDE dominates the diffusion coefficient. This source of instability can be
eliminated by using so-called upwind differences, at the cost of slower con-
vergence, or by using state variables that are themselves martingales (and
therefore have zero drift).

• The explicit finite-difference method is similar to backward recursion on a
trinomial lattice, except that the mesh of points is rectangular rather than
triangular in shape.

• The explicit method becomes unstable if the time step is too large relative to
the spatial step.
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Table 12.5. Comparison of explicit, fully implicit and Crank–Nicolson finite-difference
schemes. Numerical results for a European call option in the Black–Scholes model. Param-
eter values: σ = 0.3, r = 0, S0 = K = 100, T = 1. The extrapolation accuracy is based
on Richardson’s extrapolation formula (12.18) for the explicit and implicit finite-difference
schemes, and on (12.27) for the Crank–Nicolson scheme.

δ, h Time (s) Accuracy Extrapolation accuracy

Explicit scheme

0.001, 0.01 0.03 0.000 2 1.4 × 10−6

0.0025, 0.005 0.17 5.3 × 10−5 9 × 10−8

0.00001, 0.001 12.3 2.1 × 10−6 5.9 × 10−11

Implicit scheme

0.01, 0.01 0.02 0.017 1.2 × 10−5

0.001, 0.001 0.34 0.001 5 3.6 × 10−7

0.0001, 0.001 2.9 0.000 17 1.2 × 10−9

Crank–Nicolson scheme

0.01, 0.01 0.03 0.001 7 −1.3 × 10−6

0.001, 0.001 0.69 1.7 × 10−5 −1.3 × 10−10

0.0005, 0.0005 3.2 4.2 × 10−6 1.3 × 10−10

• The implicit finite-difference method requires a solution of a tridiagonal sys-
tem of linear equations. Efficient LU decomposition of a tridiagonal n × n

system requires only 2n multiplications, as opposed to n3/3 for a full n × n

system.

• The implicit method is stable for all values of the time step. It exhibits the
same degree of convergence (quadratic in space, linear in time) as the explicit
method and will achieve the same degree of accuracy with fewer computations
since the time step can be taken somewhat longer.

• The Crank–Nicolson scheme has the added advantage of quadratic rate of
convergence in time and space and essentially the same execution time as the
fully implicit method.

• The common feature of finite-difference schemes and binomial and trino-
mial pricing models is that they all represent locally consistent Markov chain
approximations of the underlying continuous state variable. Intuitively, the
discretized state variables on the grid have the correct conditional mean and
variance. The difference between the competing methods is the rate of con-
vergence to the true result.

• The rate of convergence is affected by the non-smoothness of the boundary
conditions (option payoff). To ensure non-oscillatory convergence, the grid
points must be placed strategically to cover the kinks and discontinuities in
the boundary conditions. For plain vanilla options this requires placement of
a grid point at the strike value.
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• The convergence of well-behaved numerical schemes can be costlessly accel-
erated by extrapolation.

• The three schemes we have discussed in this chapter can be seen as three
special cases of the system

− θ

(
c
j
k δ

2h2 + b
j
k δ

2h

)
g
j
k−1 +

(
1 + θ

c
j
k δ

h2

)
g
j
k − θ

(
c
j
k δ

2h2 − b
j
k δ

2h

)
g
j
k+1

= (1 − θ)

(
c
j+1
k δ

2h2 + b
j+1
k δ

2h

)
g
j+1
k−1 +

(
1 − (1 − θ)

c
j+1
k δ

h2

)
g
j+1
k

+ (1 − θ)

(
c
j+1
k δ

2h2 − b
j+1
k δ

2h

)
g
j+1
k+1 ,

whereby θ = 0 corresponds to the explicit method, θ = 1 to the fully implicit
method and θ = 1

2 to the Crank–Nicolson scheme.

12.10 Notes

Binomial and trinomial lattices have appeared in a vast number of journal articles.
As a quick introduction to the issues surrounding pricing on these lattices consider
reading Leisen and Reimer (1996). Textbook treatments of finite-difference schemes
with applications to pricing appear in Fusai and Roncoroni (2007), Seydel (2006)
and Wilmott et al. (1995). The treatment of local consistency and Markov chain
approximations is based on Kushner and Dupuis (2001). A textbook exposition
of basic numerical methods including extrapolation can be found in Cheney and
Kincaid (1999).

12.11 Appendix: Efficient Gaussian Elimination for Tridiagonal Matrices

This appendix assumes that the reader is familiar with the basic steps of Gaussian
elimination. Suppose we wish to solve the systemAx = z, whereA ∈ R

n×n is a non-
singular matrix and the right-hand side z is given. The so-called LU decomposition
of matrix A is an efficient way to record steps in the Gaussian elimination. Matrix
L has zeros above the diagonal, ones on the diagonal and the Gaussian elimination
multipliers below the diagonal. For example, L21 tells us how many multiples
of A1• we must subtract from A2• to eliminate the first entry in the second row.
Matrix U is upper triangular: it is obtained from matrix A after the last step of
Gaussian elimination. In general it takes about n3/3 multiplications to compute the
LU decomposition (or the Gaussian elimination). To solve Ax = z we then solve
two triangular systems Ly = z and Ux = y, which together require an additional
n2 multiplications. The general LU decomposition is available in MATLAB using
command lu.

Suppose that A is tridiagonal with below-diagonal terms a1, . . . , an−1, diagonal
terms b1, . . . , bn and above-diagonal terms c1, . . . , cn−1. The general LU decom-
position algorithm becomes inefficient because both L and U contain many zeros
which we do need to calculate. Specifically, L has ones on the diagonal and coef-
ficients l1, . . . , ln−1 just below the diagonal. All other entries are zeros. Matrix U
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has diagonal terms u1, . . . , un and above-diagonal terms equal to c. All remaining
entries are zeros. From Gaussian elimination the values of l and u are given by

u1 = b1, lk−1 = ak−1

uk−1
, uk = bk − lk−1ck−1, for k = 2, . . . , n. (12.28)

The system Ly = z leads to the recursion

y1 = z1,

yk = zk − lk−1yk−1 for k = 2, . . . , n,

}
(12.29)

while the system Ux = y yields

xn = yn/un,

xk = (yk − ckxk+1)/uk for k = n − 1, . . . , 1.

}
(12.30)

The LU decomposition (12.28) now requires only 2n multiplications, as opposed to
n3/3 for a full matrix A, while the solution of Ly = z and Ux = y together require
a further 3n multiplications, as opposed to n2 for a full matrix A.

12.12 Appendix: Richardson’s Extrapolation

Suppose we are given a function f (α) with the property

f (α) = f (0) + 1
2f

′′(0)α2 + O(α4),

which means that for α close to 0 the function decays quadratically. Our task is to
evaluate f (0). Richardson’s formula assumes that we know the values f (h), f (2h)
for h > 0 small. Since 0 lies outside the interval [h, 2h], the task of finding an
approximate value of f (0) is called extrapolation. To accomplish this task we fit a
quadratic polynomial through the nodes (h, f (h)) and (2h, f (2h)),

f (h) = k0 + k1h
2,

f (2h) = k0 + k1(2h)
2,

and solve for k0,

k0 = 4f (h) − f (2h)

3
.

It is easy to show that the extrapolated value satisfies

4f (h) − f (2h)

3
= f (0) + O(h4),

while the original estimate is precise only to the order h2:

f (h) = f (0) + O(h2).

12.13 Exercises

Exercise 12.1. Draw a 4 × 9 grid with time on the horizontal axis and the spatial
variable on the vertical axis. Suppose we are pricing a contingent claim on this grid
by an explicit finite-difference method. Highlight those nodes where the price is
unaffected by the prespecified values at the upper and lower boundaries.
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Exercise 12.2. The well-known Cox et al. (1979) binomial model corresponds to
X = ln S and h = σ

√
δ. The corresponding risk-neutral probabilities are

qu = erδ − e−h

eh − e−h
,

qd = qu − 1.

Show that the Cox, Ross and Rubinstein discretization is locally consistent under Q:
that is, we have

EQ
t [�X̂t ] = (r − 1

2σ
2)�t + o(�t),

VarQt [�X̂t ] = σ 2�t + o(�t).

Exercise 12.3. Consider X = ln S in the Black–Scholes model under the risk-
neutral measure. Evaluate the transition probabilities (12.11)–(12.13).

(a) What is the smallest value of h one can take for a given time step δ in order
to ensure positive transition probabilities?

(b) Suppose that one chooses the value of h so as to generate pm = 0. Compare
the resulting values of h, pu, pd with the values suggested in the Cox et al.
(1979) binomial model.

Exercise 12.4. Derive the pricing PDE for the forward price of a European call
option in the Black–Scholes model, using X = S as the state variable, and then
write down the appropriate boundary conditions. Modify the MATLAB function
BSCallEFD2.m to reflect the new PDE and the new boundary conditions.

Exercise 12.5. Using the notation of Section 12.11 write a MATLAB function lu3
which inputs vectors a, b, c and outputs vectors l, u obtained from equation (12.28).

Exercise 12.6. Using the notation of Section 12.11 write a MATLAB function
lucsolve which inputs vectors l, u, c, z and outputs x calculated in two steps
from (12.29) and (12.30). This is useful when the PDE coefficients are time inde-
pendent (as in the Black–Scholes model).

Exercise 12.7. Write a MATLAB function abcsolve which inputs vectors a, b,
c, z and outputs x. This is useful when the PDE coefficients are time dependent (as
in the case of Asian options).

Exercise 12.8. Recode BSCallIFD.m using the tridiagonal solvers developed above.

Exercise 12.9. Define It = ∫ t

0 Su du/T . The price of a fixed strike Asian option is
given by

A = e−rT EQ[(IT − K)+].
Rogers and Shi (1995) show that A = S0g(0,−K/S0), where g solves the PDE

0 = ∂g

∂t
+
(

1

T
− rx

)
∂g

∂x
+ x2σ 2

2

∂2g

∂x2 ,
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with boundary conditions

g(T , x) = x+,

g(t, x1) = x1,

g(t, xN) = 0.

Implement this PDE by means of an explicit finite-difference scheme and examine
its stability. Replace the standard explicit finite differences by upwind differences
and repeat the exercise. Use parameter values T = 1, σ = 0.3, r = 0.04, S0 =
K = 100.

Exercise 12.10. Večeř (2002) shows that the price of a fixed strike Asian option is
given by

A = S0g

(
0,

1 − e−rT

rT
− K

S0
e−rT

)
,

where g solves

0 = ∂g

∂t
+
(

1 − e−r(T−t)

rT
− x

)2
∂2g

∂x2 ,

with boundary conditions

g(T , x) = x+,

g(t, x1) = x1,

g(t, xN) = 0.

Use parameter values T = 1, σ = 0.3, r = 0.04, S0 = K = 100. Implement this
PDE by means of a fully implicit finite-difference scheme and examine its stability.

Heqing

Heqing

Heqing

Heqing

Heqing

Heqing



13
Dynamic Option Hedging and Pricing in

Incomplete Markets

The models of Chapters 5, 6, 11 and 12 imply that option hedging is a riskless
business. In practice, this is far from true. In this chapter we will describe the
simplest way of measuring and computing the risk of dynamic option hedging
strategies. The chapter has four sections.

Section 13.1 starts out by constructing a reasonably realistic distribution of stock
returns, allowing for larger-than-normal price movements on short to medium time
horizons. We then define the hedging risk as the expected squared replication er-
ror to maturity. We will describe the dynamically optimal strategy (the so-called
variance-optimal hedge) and the locally optimal strategy that turns out to be vir-
tually identical to the continuous-time Black–Scholes hedge. We will evaluate the
expected replication error of these two strategies. We will show how the uncon-
ditional replication error is related to the option’s gamma and to the kurtosis of
stock returns. The first part concludes by examining the properties of variance-
optimal martingale measure and the way it can be used to describe the convergence
of variance-optimal hedge to the Black–Scholes strategy.

The first section tacitly assumes that the average hedging error is zero, but, in
practice, options are sold at a premium. It makes better sense to view the option
and the associated hedging strategy as an investment. Section 13.2 shows how
to evaluate the expected utility of option hedging strategies and calculates their
dynamic Sharpe ratio.

Section 13.3 explores the continuous-time limit. We will observe that the hedging
error disappears in the Brownian motion limit, but that in reality returns are far from
normal and hedging errors remain high even with very short rebalancing intervals.

Section 13.4 describes the mathematical technology needed to derive the optimal
hedging strategy. It motivates Bellman’s principle of optimality and carefully de-
scribes the principle of dynamic programming. We derive and interpret the optimal
hedging strategy and show how all quantities of interest can be obtained from a
simple least-squares regression.

13.1 The Risk in Option Hedging Strategies

13.1.1 A More Realistic Stock Price Model

In Chapter 5, to keep the model complete, we could only allow two values of stock
return in any one period. In this chapter we will allow for seven values of weekly
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Figure 13.1. Model of weekly log return.
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Figure 13.2. Histogram of weekly log returns.

returns, but having more is not a problem. What is important is to space the log
returns out regularly, so that our tree recombines.1 In this particular example we
will use a gap of 2% (see Figure 13.1).

Next we have to get the empirical distribution of weekly stock returns. For
the purpose of this chapter we will consider weekly returns on FTSE 100 Index,
assuming that the weekly returns are distributed independently. To produce an
appropriate histogram we will divide the log returns into seven categories (bins),
the first bin containing all the log returns below −5%, the second bin containing all
the returns between −5% and −3%, and so on, with the last bin ranging from 5%
upwards. The resulting histogram of weekly returns2 in the period 1984–2001 is
depicted in Figure 13.2.

1This gives the simplest implementation of the model. Numerically, it is often more efficient to set
up a stock price grid but then to allow stock returns to fall between grid points. Such an arrangement
requires interpolation between grid points, but it gives greater flexibility in modelling conditional returns,
which is particularly advantageous at short time horizons, where returns can span a range of 20 standard
deviations or more.

2For simplicity this example assumes that the risk-free rate has been constant between 1984 and 2001.
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Figure 13.3. Lattice of stock prices.

Our aim is to price a European call option with six weeks to expiry, rehedging
once a week. We will assume that the initial value of the index is S0 = 5100. The
resulting stock price lattice is depicted in Figure 13.3 (see also Exercise 13.1). The
conditional probabilities of movement within the lattice are taken from the histogram
in Figure 13.2 (see Figure 13.4). The option is struck at K = 5355, that is, initially
5% out of the money.

13.1.2 Mean–Variance Hedging

We will now describe the goal of dynamic hedging. With seven possible values of
return and only two assets to hedge with, our market is incomplete; we therefore
expect any option hedging strategy to entail some hedging error, which of course
means risk. Chapter 3 taught us that economists weigh up risks and returns using
utility functions. In particular, we know that for small risks all utility functions
are virtually equivalent and that the simplest utility function to use is quadratic.
Since our situation is complicated by having to deal with many periods, we will
happily settle for a quadratic utility; it is a good starting point that can inform future
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Figure 13.4. Conditional objective probabilities of stock price movement.

extensions to exponential or logarithmic utility. Besides, if one hedges frequently,
it is likely that the risks involved are small.

Mathematically, we will formulate the problem as follows. The goal is to minimize
the time 0 expected squared replication error at maturity. This is achieved by
choosing the adapted self-financing trading strategy {θt }t=0,1,...,T to solve

min{θt }t=0,1,...,T
E[(VT − HT )

2] (13.1)

s.t. VT = RT
f V0 +

T−1∑
t=0

RT−t−1
f θtSt (Rt+1 − Rf), (13.2)

where HT is the payoff of the option at expiry, VT denotes the terminal value of
the hedging portfolio generated by holding θt units of the stock at time t (thus θt
represents what is commonly known as the option delta) with the remaining money
deposited safely in (or borrowed from) the risk-free bank account with safe return
Rf. {Rt }t=1,...,T are IID stock returns with conditional objective probability density
given in Figure 13.4.

13.1.3 Guide to Mean–Variance Hedging Strategies

We will describe two hedging strategies. The dynamically optimal hedge that solves
(13.1) and (13.2) is denoted θD

t and called the variance-optimal hedge. It depends
on the stock price, the calendar time and the current value of the hedging portfolio
V D
t . We will also encounter a closely related suboptimal strategy θL

t , which only
depends on the stock price and the calendar time. We will call this strategy the
locally optimal hedge. The solution is characterized by the processes H and (εD)2

and (εL)2; all three are functions of stock price and calendar time only.
The process H is called the mean value process because the replicating portfolio

with value Ht has zero expected hedging error. In a complete market the hedging
risk is identically zero and H is the no-arbitrage price of the option.

The ε2 processes capture the minimum expected squared replication error (the
minimum attainable hedging risk); they are always non-negative and in a complete
market they are identically equal to zero. In addition, with IID returns we always
have (εD

t )
2 � (εL

t )
2.

We now describe the construction of H , θL, θD and εL, εD in turn. The results
are simplified to the special case with IID returns and constant interest rate. The
solution method and the general solution are described in Section 13.4.
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13.1.4 Mean Value Process

This process is constructed with the help of special risk-neutral probabilities called
variance-optimal probabilities. The variance-optimal probabilities in turn are com-
puted from the distribution of excess returns. The variance-optimal measure will
be denoted Q to distinguish it from the objective probability measure P . The cor-
responding change of measure is given by the formula,

dQ

dP
= m1|0m2|1 · · ·mT |T−1, (13.3)

mt+1|t := qt+1|t
pt+1|t

= 1 − aXt+1

b
; (13.4)

for a detailed discussion of the change of measure and its role in finance, refer to
Chapter 9. The all-important parameters, a and b, are closely linked to quadratic
utility maximization (see Chapter 3); a represents the optimal investment in the basis
asset (stock) per unit of risk tolerance, b represents the maximum utility, which in
turn is related to the Sharpe ratio of the basis asset:

Xt+1 := Rt+1 − Rf, (13.5)

a = Et [Xt+1]
Et [X2

t+1]
, (13.6)

b = 1 − (Et [Xt+1])2

Et [X2
t+1]

= 1

1 + SR2(X)
. (13.7)

We will assume that the risk-free interest rate is 4% per annum, equivalent to a
risk-free return of Rf = 1.041/52 per week. Numerically,

Rt+1 = [e0.06 e0.04 e0.02 e0.00 e−0.02 e−0.04 e−0.06
]
,

Rf = 1.000 75,

Xt+1 = [6.108 4.006 1.945 −0.075 −2.056 −3.997 −5.899
]

× 10−2,

Et [Xt+1] = 1.58 × 10−3,

Et [X2
t+1] = 4.72 × 10−4,

a = 1.58 × 10−3

4.72 × 10−4 = 3.35,

b = 1 − 1.582 × 10−6

4.72 × 10−4 = 0.9947,

mt+1|t = [0.7995 0.8704 0.9398 1.007 9 1.0746 1.1400 1.2041
]
,

qt+1|t = mt+1|tpt+1|t
= [0.010 0.058 0.257 0.387 0.214 0.057 0.017

]
.
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The risk-neutral probabilities q and the option payoff HT define the mean value
process {Ht }t=0,1,...,T as follows:

Ht = EQ
t

[
HT

RT−t
f

]
.

In our special case with IID returns and a deterministic interest rate the conditional
variance-optimal probabilities qt+1|t coincide with the risk-neutral probabilities of
the one-period Markowitz Capital Asset Pricing Model (CAPM). Thus HT−1 is the
CAPM price of the option at time T − 1, HT−2 is the CAPM price of HT−1 at time
T − 2 and so on.

The value of Ht is computed recursively using the risk-neutral probabilities and
starting from the last period as in the complete market case:

Ht = EQ
t

[
Ht+1

Rf

]
, t = T − 1, . . . , 0. (13.8)

However, formula (13.8) differs from its complete market counterpart in one im-
portant respect. While in a complete market there is a self-financing portfolio with
value Ht that perfectly replicates Ht+1, in an incomplete market such a portfolio
generally does not exist. Exercise 13.2 implements the mean value process in a
spreadsheet.

The mean value process Ht is depicted in Figure 13.5, together with the corre-
sponding Black–Scholes value for comparison. It turns out that the mean value Ht

is very close to the Black–Scholes value, even though many of the assumptions of
the Black–Scholes model are violated here. Consider, for example, the middle node
at t = 1. The Black–Scholes formula dictates that

C(S,K, r, σ, τ ) = SΦ

(
ln(S/K) + (r + 1

2σ
2)τ

σ
√
τ

)

− e−rτKΦ

(
ln(S/K) + (r − 1

2σ
2)τ

σ
√
τ

)
with

S = 5100.00, K = 5355,

r = ln(1.041/52), τ = 6 − 1 = 5,

σ =
√

4.72 × 10−4 − 1.582 × 10−6 = 2.16 × 10−2,

resulting in C = 24.1, as compared with H = 23.7 in the same node. Black–
Scholes requires continuous trading and lognormally distributed returns, while the
trading in our model is far from continuous and the lognormality of stock returns is
questionable too. This shows that the Black–Scholes formula is extremely robust,
and no doubt this is the main reason for its popularity. Where the robustness is
coming from is discussed in Section 13.3.4.

13.1.5 Black–Scholes Delta and Optimal Hedging Strategy

It turns out that the dynamically optimal hedging strategy θD
t is obtained from the

minimization of the one-step-ahead hedging error Et [(Vt+1 − Ht+1)
2]. Using the
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Figure 13.5. Comparison of (a) the mean value process H with
(b) the corresponding continuous-time Black–Scholes prices.

self-financing condition Vt+1 = RfVt + θtSt (Rt+1 − Rf) the squared error can be
written as

Et [(RfVt + θtStXt+1 − Ht+1)
2] (13.9)

and it is clear that the optimal value of θt depends not only on Ht+1 but also on Vt .
The nature of the self-financing portfolio is such that once we arrive at time t we

cannot choose Vt ; it is given by our past trading strategy and realizations of stock
prices. But it makes sense to inquire what value of Vt we would prefer if we had
the choice. It turns out that the optimal pair Vt , θt minimizing (13.9) is Vt = Ht ,
θt = θL

t ,

θL
t = Et [(Ht+1 − RfHt)Xt+1]

StEt [X2
t+1]

, (13.10)

where θL
t is the locally optimal delta. Effectively, the locally optimal hedging

strategy assumes that the value of the hedging portfolio is always at its optimum
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Figure 13.5. See opposite for description.

Ht . In an incomplete market this is obviously not always the case; therefore, the
dynamically optimal strategy makes an adjustment for the difference between Vt

and Ht :

θD
t = θL

t + Rfa
Ht − V D

t

St

. (13.11)

The coefficient a is computed from (13.6), numerically a = 3.35. In a bull market,
a > 0, the delta is adjusted downward when the self-financing portfolio is above
the target value Ht and vice versa. In a bear market the adjustments are exactly the
opposite.

The locally optimal delta is easily computed from formula (13.10), because we
already know the values of Ht+1 in all nodes (see Exercise 13.3). Figure 13.6
compares θL

t with its Black–Scholes counterpart. We note that the difference never
exceeds two percentage points. In practice, the continuous-time Black–Scholes
delta is a very good approximation to the locally optimal delta because the ex-
pected squared hedging error of the two strategies is virtually identical. But the
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Figure 13.6. Comparison between (a) the discrete-time and
(b) continuous-time Black–Scholes delta.

question remains how inefficient is the Black–Scholes strategy compared with the
dynamically optimal strategy, and that will be the focus of the next two sections.

13.1.6 Monte Carlo Simulation of Hedging Errors

Let us visualize the outcome of the two competing hedging strategies θL
t and θD

t .
Consider a randomly chosen sequence of returns written down in Table 13.1 and
depicted in Figure 13.7.

Our aim is to simulate the resulting value of the locally and dynamically optimal
hedging portfolios. From the self-financing condition we have

V L
t+1 = RfV

L
t + θL

t (St+1 − StRf), (13.12)

V D
t+1 = RfV

D
t + θD

t (St+1 − StRf), (13.13)
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Figure 13.6. See opposite for description.

Table 13.1. One random draw for stock returns.

ln(S1/S0) ln(S2/S1) ln(S3/S2) ln(S4/S3) ln(S5/S4) ln(S6/S5)

−0.04 0.02 0.00 −0.02 0.02 0.00

and the dynamically optimal delta is obtained from (13.11):

θD
t = θL

t + Rfa
Ht − V D

t

St

.

The initial value of the hedging portfolio is the same for both strategies V D
0 =

V L
0 = H0 and consequently also θD

0 = θL
0 . From Figure 13.6a we find θL

0 = 0.21.
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Figure 13.7. Illustration of a Monte Carlo experiment generating hedging errors.

From the self-financing condition (13.12) we have

V L
1 = RfV

L
0 + θL

0 (S1 − S0Rf)

= 1.000 75 × 30.95 + 0.2145 × (4900.03 − 5100 × 1.000 75)

= −12.74.

An identical calculation applies to V D
1 ; therefore, at t = 1 we have V D

1 = V L
1 =

−12.74. Both portfolios are short of the target value H1 = 3.75.
From Figure 13.6a we find the locally optimal delta at t = 1 to be θL

1 = 0.0428.
Unlike the locally optimal hedge, the dynamically optimal delta takes into account
that the value of the hedging portfolio has fallen short of the target,

θD
1 = θL

1 + Rfa
H1 − V D

1

S1

= 0.0427 + 1.000 75 × 3.35 × 3.75 + 12.74

4900.0
= 0.0540,
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Table 13.2. Comparison of locally optimal and dynamically optimal hedging
strategies in one Monte Carlo experiment.

t 0 1 2 3 4 5 6

St 5100.00 4900.03 4999.01 4999.01 4900.03 4999.01 4999.01
Ht 30.95 3.75 6.05 2.83 0.09 0.00 0.00
θL
t 0.2145 0.0427 0.0697 0.0419 0.0025 0.0000 N/A

θD
t 0.2145 0.0540 0.0788 0.0491 0.0114 0.0080 N/A

V L
t 30.95 −12.74 −8.69 −8.96 −13.27 −13.05 −13.06

V D
t 30.95 −12.74 −7.61 −7.92 −12.97 −11.89 −11.93

Table 13.3. Monte Carlo simulation of hedging errors.

Average Average squared
hedging error hedging error

Number of runs L D L D

10 000 0.143 0.167 1069.83 1055.92
100 000 −0.0657 −0.0622 1063.40 1052.12

1 000 000 −0.0767 −0.0746 1072.11 1061.72

with the adjustment equal roughly to one percentage point. The value of the two
hedging portfolios at t = 2 is again obtained from the self-financing conditions
(13.12) and (13.13):

V L
2 = RfV

L
1 + θL

1 (S2 − S1Rf)

= 1.000 75 × (−12.74) + 0.0427 × (4999.01 − 4900.03 × 1.000 75)

= −8.68, (13.14)

V D
2 = RfV

D
1 + θD

1 (S2 − S1Rf)

= 1.000 75 × (−12.74) + 0.054 × (4999.01 − 4900.03 × 1.000 75)

= −7.60, etc. (13.15)

Table 13.2 details the remaining calculations (results in equations (13.14) and
(13.15) contain small rounding errors). First of all we note that the value of both
hedging portfolios is at the end quite far from the option payoff, V L

6 = −13.06 and
V D

6 = −11.93, whereas the option expires out of the money H6 = 0.00. Secondly,
we note that the locally optimal delta is very close to the dynamically optimal delta,
the difference always less than 1.5 percentage points and consequently the values
of the two portfolios remain close together.

These observations are only valid for the sequence of stock returns given in
Table 13.1. To see what happens in general one has to perform a Monte Carlo
simulation. This requires generating Table 13.1 randomly many times, and for each
sequence of returns in Table 13.1 producing the corresponding Table 13.2, storing
the resulting hedging shortfalls, H6 − V L

6 and H6 − V D
6 .
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Figure 13.8. Scatter plot of locally optimal hedging errors
(horizontal axis) against dynamically optimal errors (vertical axis).

Figure 13.8 plots the resulting values of H6 − V L
6 against H6 − V D

6 for 10 000
randomly chosen stock price histories. The hedging errors can be quite large—their
magnitude varies from −230 to 900—compared with the Black–Scholes price of
30. It is also apparent that the errors move together along the 45◦ line signifying
there is little difference between the locally optimal and the dynamically optimal
hedging strategy. The numerical values of the average squared hedging error from
the Monte Carlo simulations are reported in Table 12.3 (see the MATLAB program
chapter12sect1.m).

In conclusion,

• discrete-time hedging errors are non-trivial;

• little is gained from following a dynamically optimal hedging strategy
instead of the Black–Scholes hedge.

Monte Carlo may be a natural way of comparing and evaluating the performance
of alternative hedging strategies, but this method does have its own shortcomings.
First of all, it is difficult to generate truly random numbers. Secondly, the number of
simulations required to generate a representative sample of stock price histories is
very high. Thirdly, the result of a Monte Carlo study is itself random. Therefore, one
may have to run several million simulations before one is convinced that the results
obtained are representative. All this is, of course, time-consuming. In the next
section we will show how the performance of the two competing hedging strategies
can be evaluated by a simple recursive procedure in a tree.



13.1. The Risk in Option Hedging Strategies 293

13.1.7 Squared Error Process ε2
t

The mean value process Ht represents the target value the hedging portfolio Vt is
trying to achieve. It can be shown that Vt = Ht minimizes the expected squared
replication error as seen at time t , Et [(VT − HT )

2]. The size of the error in the ideal
case Vt = Ht is measured by the squared error process ε2

t :

Et [(VT − HT )
2] = kt (Vt − Ht)

2 + ε2
t .

Specifically, ε2
t only depends on the stock price and the calendar time and it is

computed recursively from

ε2
t = Et [ε2

t+1] + kt+1ESREt (Ht+1), (13.16)

εT = 0. (13.17)

The term ESREt (Ht+1) is the one-period expected squared replication error from
hedging the payoff Ht+1, and it is the same for the locally and dynamically optimal
hedging strategies:

ESREt (Ht+1) = Et [(RfHt + θL
t StXt+1 − Ht+1)

2]. (13.18)

Theorem 13.1 (IID hedging theorem). The only difference between the two strate-
gies (L, D) in terms of the hedging error is the proportion kt+1 of the one-period
error that is carried over to the previous period:

kL
t = R

2(T−t)
f = 1.0015T−t , (13.19)

kD
t = R

2(T−t)
f bT−t = 0.9962T−t . (13.20)

Proof. See Section 13.4.7.

This proportion is smaller for the dynamically optimal strategy by the factor of
bT−t . Recall from (13.7) that b = 1 − (Et [Xt+1])2/Et [X2

t+1]. An econometrician
would interpret (Et [Xt+1])2/Et [X2

t+1] as the non-central R2 from the regression of
the risk-free rate onto the excess return. Naturally, the excess return performs very
poorly in explaining the variation in the risk-free rate; consequently, the R2 will be
small and b will be very close to 1, which is one reason why the expected squared
error of the dynamically optimal hedge is only marginally smaller than the expected
squared error of the locally optimal hedge.

13.1.8 One-Period Hedging Errors

Since the one-period hedging errors are a crucial ingredient of the total hedging
error, we will now briefly review how one computes ESREt (Ht+1). The reader may
wish to revisit the material in Section 2.3

Consider the middle node in the penultimate period, S5 = 5100. The basis assets
are the stock and the bank account deposit/overdraft, the focus asset is the option.
The payoff of basis assets is in matrix A, the amount to be hedged is in vector b,
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and objective probabilities are given by p:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000 75 5415.37
1.000 75 5308.13
1.000 75 5203.03
1.000 75 5100.00
1.000 75 4999.01
1.000 75 4900.03
1.000 75 4803.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

60.37
0.00
0.00
0.00
0.00
0.00
0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.013
0.067
0.273
0.384
0.199
0.051
0.014

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because we are after the expected squared replication error, we will generate Ã, b̃

by multiplying each row of A and b with the square root of the probability for
the corresponding state. The optimal hedge then takes the form of least-squares
coefficients:

x = (Ã∗Ã)−1Ã∗b̃. (13.21)

Numerically,

x =
[ −98.5

1.94 × 10−2

]
,

and the expected squared error is ε̃∗ε̃, where ε̃ = Ãx − b̃. In our case,

ε̃∗ = [−6.14 1.14 1.23 0.22 −0.71 −0.79 −0.64
]
,

ε̃∗ε̃ = 42.11. (13.22)

As a result of the way we have set up the matrix A, the coefficient x1 is inter-
preted as the amount of money deposited in the bank account and x2 is the number
of shares (option delta). For a spreadsheet implementation of ESREt (Ht+1), see
Exercise 13.5.

Figure 13.9a depicts the one-period expected squared hedging errors, with the
result (13.22) highlighted. The largest replication errors are concentrated at the
money, whereas far in and out of the money the replication error is virtually zero.
This makes sense, since far in and out of the money the option payoff is linear in
stock price and the option therefore becomes a redundant asset. The non-linearity of
option payoff at the money is traditionally captured by the option gamma, which is
the second derivative of Black–Scholes price with respect to stock price. We discuss
the gamma and its relationship to ESREt (Ht+1) in the next section.

13.1.9 Black–Scholes Gamma

We saw in Section 13.1.4 that Ht is very close to the Black–Scholes price of the
option. Thus we may believe that the hedging error ESREt (Ht+1) will be well
approximated by the hedging error implied by the Black–Scholes formula, which is
examined in Appendix 13.7. We find that the one-period squared hedging error is
proportional to the kurtosis of asset returns and to gamma squared:

ESREt (Ht+1) ≈ ( 1
2γtS

2
t Vart (Rt+1))

2(kurtt (Rt+1) − 1). (13.23)
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Table 13.4. Composition of the total error for
the dynamically optimal and locally optimal strategy.

t 0 1 2 3 4 5

E[ESREt (Ht+1)] 101.4 119.0 139.5 167.1 212.8 328.9

Locally optimal k 1.0076 1.0061 1.0045 1.0030 1.0015 1.0000

Dynamically optimal k 0.9811 0.9849 0.9886 0.9924 0.9962 1.0000

The explicit value of γ is computed in the exercises of Appendix A:

γt = 1

σ
√
T − tSt

exp

(
−1

2

(
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

)2)
. (13.24)

In the Black–Scholes setting, returns are virtually normally distributed and the
kurtosis of returns is therefore equal to 3. This generates the standard result for the
variance of one-step errors in a discretely rehedged Black–Scholes model:

ESREt (Ht+�t ) ≈ 1
2σ

4γ 2S4
t (�t)2.

In our model the kurtosis is 3.28 and therefore the standard formula becomes

ESREt (Ht+�t ) ≈ 2.28

4
σ 4γ 2S4

t (�t)2. (13.25)

The Black–Scholes approximation of ESREt (Ht+�t ) is depicted in Figure 13.9b.

13.1.10 Unconditional Hedging Errors and Toft’s Formula

Having computed the one-period errors, the next task is to combine them to evaluate
the total expected squared hedging error. Using equation (13.16) recursively we
obtain

ε2
0 = E

[T−1∑
t=0

kt+1ESREt (Ht+1)

]
, (13.26)

that is the total squared hedging error is equal to the expectation of the sum of
one-period squared hedging errors. Because, in our case, the process k is de-
terministic, we can simplify (13.26) further by taking k in front of the expecta-
tion

ε2
0 =

T−1∑
t=0

kt+1E[ESREt (Ht+1)]. (13.27)

Table 13.4 gives numerical values of E[ESREt (Ht+1)] for individual periods t ,
together with weights k for the two hedging strategies.
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Figure 13.9. Comparison of (a) one-step-ahead expected squared hedging error based on
the discrete model and (b) on discrete application of the continuous Black–Scholes formula.

The total expected squared error of the locally optimal strategy is

(εL
0 )

2 = 1.0076 × 101.4 + 1.0061 × 119.0 + 1.0045 × 139.5

+ 1.0030 × 167.1 + 1.0015 × 212.8 + 1.0000 × 328.9

= 1071.6, (13.28)

whereas for the dynamically optimal strategy we have

(εD
0 )2 = 0.9811 × 101.4 + 0.9849 × 119.0 + 0.9886 × 139.5

+ 0.9924 × 167.1 + 0.9962 × 212.8 + 1.0000 × 328.9

= 1061.3. (13.29)

These exact figures should be compared with the Monte Carlo estimates in Ta-
ble 13.3.



13.1. The Risk in Option Hedging Strategies 297

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 strike
0.00
0.00

98.72 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

ESRE implied by Black–Scholes value(b)

229.34
244.71
185.72
100.25

38.49
10.51

2.04

17.85
68.68

172.64
283.46
304.01
212.98

97.46
29.13

5.69
0.73
0.06
0.00
0.00

0.00
0.05
0.92
9.70

57.62
194.05
370.38
400.67
245.65

85.36
16.81

1.88
0.12
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.07
2.41

34.15
206.43
532.45
585.96
275.14

55.12
4.71
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
4.20

146.67
933.49

1081.62
228.16

8.76
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Figure 13.9. See opposite for description.

• Table 13.4 indicates why the locally optimal strategy performs nearly as
well as the dynamically optimal hedge. It shows that the errors close to
maturity contribute three times as much to the total error than the errors
in the first hedging period. Yet the gain from following the dynamically
optimal strategy is the largest in the early hedging periods and it vanishes
as one gets closer to maturity.

• One can approximate the total hedging error by means of Toft’s formula,
which replaces ESREt (Ht+1) in (13.27) with the gamma approximation
(13.23) (see also Exercise 13.9). Toft’s formula adjusted for excess kurtosis
seems to work very well on historical equity data; however, it is only an
approximation and has to be used cautiously. One can easily construct
artificial return distributions for which the kurtosis-adjusted Toft formula
will hugely overestimate the true hedging errors.
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Figure 13.10. Comparison of squared error processes of the
dynamically optimal and the locally optimal strategies.

Formula (13.27) is useful for a comparison between the errors of the dynamically
and locally optimal strategies, but it is not a very practical recipe for computing
ε2
t . Just think how many computations are required to evaluate E[ESRE5[H6]],

then E[ESRE4[H5]], and so on, even when all ESREs are already known. A better
strategy is to take advantage of the recursive relationship (13.16):

ε2
t = Et [ε2

t+1] + kt+1ESREt (Ht+1)

(see Exercise 13.6).
The values of ε2

t are shown in Figure 13.10, where we can see that the total
expected squared hedging error of the dynamically optimal strategy is 1061.4 and
the locally optimal error is 1071.7, confirming the results in equations (13.28) and
(13.29).
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Figure 13.10. See opposite for description.

13.2 Incomplete Market Option Price Bounds

13.2.1 Sharpe Ratio of Option Hedging Strategies

So far we have tacitly assumed that options are bought and sold at the mean valueH0.
But suppose now that we are able to sell a call option at a premium π > 0, receiving
H0 + π . If we simply plough this amount of money into the hedging strategy by
taking V0 = H0 +π , then the expected squared replication error actually increases,
because for the optimal strategy we have

E[(VT − HT )
2] = kD

0 (V0 − H0)
2 + (εD

0 )2 (13.30)

and this value is the smallest for V0 = H0. If V0 �= H0, then the squared replication
error alone does not tell us how good a given option deal is. In this section we will
examine option hedging strategies in the context of optimal investment, discussed
in Section 3.6. The result will not only tell us how many units of the option to sell
at a given price and what is the optimal hedge to maturity, but most importantly we
will be able to evaluate the investment potential of the whole package.
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Let C0 be the initial (ask) price of the option. We consider selling η units of the
option with payoff HT . By equation (3.42), to maximize the Sharpe ratio of the
hedged position we must solve

min
{θt }T−1

t=0 ,η∈R

E[(1 − (VT + η(C0R
T
f − HT )))

2], (13.31)

with V0 = 0.
We can think of VT with V0 = 0 as an excess return on a dynamic investment in

the stock. The optimal strategy θD in (13.31) will now comprise both an optimal
investment in the stock and a hedge for the extra option exposure. The expression
C0R

T
f − HT represents an excess return on a naked option position.

Equation (13.31) resembles a quadratic hedging problem. By comparing (13.31)
with (13.1) we can see that for a fixed η the minimum is achieved by the variance-
optimal strategy whereby we start with wealth V0 = 0 and optimally hedge the
amount

H̃T = 1 + η(HT − C0R
T
f ).

Therefore, by virtue of (13.30),

min
{θt }T−1

t=0

E[(1−(VT +η(C0R
T
f −HT )))

2] = kD
0 (1/RT

f + η(H0 − C0)︸ ︷︷ ︸
H̃0−V0

)2+(εD
0 (H̃T ))

2,

(13.32)
where (εD

0 (H̃ T ))
2 is the squared error process from hedging the exposure H̃ T . It is

intuitively clear that

(εD
0 (H̃T ))

2 = (εD
0 (ηHT ))

2 (13.33)

because the risk-free amount 1 − ηC0R
T
f can be hedged perfectly. Similarly, the

error has a linear scaling property:

(εD
0 (ηHT ))

2 = η2(εD
0 (HT ))

2. (13.34)

Putting (13.32)–(13.34) together we have

min
{θt }T−1

t=0

E[(1 − (VT + η(C0R
T
f − HT )))

2]
= kD

0 (1/RT
f + η(H0 − C0))

2 + η2(εD
0 (HT ))

2

= bT (1 + ηRT
f (H0 − C0))

2 + η2(εD
0 (HT ))

2. (13.35)

The last step requires finding the optimal number of options to sell, that is, min-
imizing the right-hand side of (13.35) with respect to η. The first-order conditions
give

2bT (1 + η̂RT
f (H0 − C0))R

T
f (H0 − C0) + 2η̂(εD

0 (HT ))
2 = 0,

which implies

η̂ = RT
f (C0 − H0)

R2T
f (C0 − H0)2 + b−T (εD

0 (HT ))2
. (13.36)
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By virtue of (3.42), (13.35) and (13.36), the Sharpe ratio of the self-financing strategy
in stock combined with the static option position is given by

1

1 + SR2 = bT (1 + η̂RT
f (H0 − C0))

2 + η̂2(εD
0 (HT ))

2

= (εD
0 (HT ))

2

R2T
f (C0 − H0)2 + b−T (εD

0 (HT ))2
,

which yields
SR2 = b−T − 1 + (RT

f (C0 − H0)/ε
D
0 (HT ))

2. (13.37)

Let H0 be the mean value of the option and let (εD
0 (HT ))

2 be the expected squared
replication error.

• The optimal ratio of option sale revenue to the risk-free wealth, per unit of
local relative risk tolerance, is

η̂C0 = bT RT
f (1 − H0/C0)

bT R2T
f (1 − H0/C0)2 + (εD

0 (HT )/C0)2

when options can be issued at price C0 > H0.
• The corresponding maximum Sharpe ratio of an optimally hedged position

is given by

SR2 = b−T − 1 + (RT
f (C0 − H0)/ε

D
0 (HT ))

2,

where
√
b−T − 1 is the maximal Sharpe ratio available by trading only

in the stock and RT
f (C0 − H0)/ε

D
0 (HT ) is an incremental Sharpe ratio,

sometimes called the information ratio, due to the additional option trades.

13.2.2 Numerical Examples

Consider the stock market model of the first section and the option mentioned there.
We have calculated the mean value of the option to be H0 = 31.0. Recall that 31.3
is the Black–Scholes price of the option at which the implied volatility coincides
with the objective volatility of the stock. Suppose that the option can be sold at
C0 = 39.4; this corresponds to an implied volatility of 10 percentage points above
the objective volatility. The optimal option revenue as a fraction of risk-free wealth
per unit of local risk tolerance is

η̂C0 = 1.046/52(1 − 31.0/39.4)

(1.046/52(1 − 31.0/39.4))2 + 0.9947−6(
√

1061.4/39.4)2
= 0.285.

Hence the option sales revenue of a hedger with a local relative risk aversion of 5
would be equal to 0.285/5 = 5.7% of her risk-free wealth, provided that the hedger
uses weekly rebalancing and the dynamically optimal strategy.

The Sharpe ratio of this strategy is 0.315. It is a combination of the basis Sharpe
ratio

SRbasis =
√

0.9947−6 − 1 = 0.180
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obtained by investing in the risk-free bank account and the stock only, and the Sharpe
ratio of the dynamically optimal option hedge,

SRoption = 1.046/52(39.4 − 31.0)√
1061.4

= 0.259,

SR =
√

0.1802 + 0.2592 = 0.315.

13.2.3 Option Price Bounds

So far we have looked at the investment potential of a hedging strategy with option
price given. One can revert this procedure to find a ‘sensible’ range of prices for the
option. The basic idea is that one should not observe option prices in the market that
lead to highly attractive hedging strategies, so-called good deals or near-arbitrage
opportunities. Suppose we can agree that a Sharpe ratio of 1 represents an extremely
attractive investment. In such a case the option price should obey

|C0 − H0|RT
f

εD
0 (HT )

< 1. (13.38)

Obviously, the better the hedge we can come up with the smaller the hedging error
ε and the narrower the price bounds. The interpretation of the bounds is simple: if
the price drops below the lower bound, then buy the option; if it increases beyond
the upper bound then sell. The complete market world now becomes a special case
with ε = 0, where the investor makes a move as soon as the price deviates from H0.

The idea sounds deceptively simple, so where is the catch? We are using a
quadratic utility which is extremely conservative when dealing with skewed risks.
Consider the price bounds given by equation (13.38). Numerically, we have

Clow = H0 − εD
0 (HT )

RT
f

= 31.0 −
√

1061.4

1.046/52
= −1.4,

Chigh = H0 + εD
0 (HT )

RT
f

= 31.0 +
√

1061.4

1.046/52
= 63.4.

The lower price bound is negative. This is a familiar story from Chapter 3; the
quadratic utility is not very good at recognizing arbitrage opportunities. When the
option price is low we would like to buy the option, which means we have a limited
downside risk and a large upside potential. The quadratic utility, however, penalizes
the upside and hence the Sharpe ratio of this wonderful investment opportunity is
low. This problem is not as dramatic when we are selling the option, but even there it
is theoretically possible to find a selling price that gives us an arbitrage opportunity
and only a finite level of Sharpe ratio.

To conclude, Sharpe ratio price bounds are ultra cautious. If we want a more
sensitive criterion, we need to be able to solve the hedging problem with a non-
decreasing utility. The exponential utility is the easiest to work with, but that is
already beyond the scope of this book. If the reader is comfortable with the material
in Chapters 3 and 4 and with the last part of this chapter, then it is a very interesting
and feasible project to try to extend the analysis of this chapter to the exponential
utility.
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13.2.4 Is H0 a No-Arbitrage Price of the Option?
Properties of Variance-Optimal Measure

The peculiar behaviour of the quadratic utility raises one interesting question: could
it happen that the mean value price H0 permits arbitrage? To guarantee that H0
admits no arbitrage it is enough to show that (i) the variance-optimal measure Q is a
martingale measure and (ii) the variance-optimal probabilities are strictly positive.
The rest then follows from the dynamic arbitrage theorem. To demonstrate (i) one
must show that this measure prices the stock returns correctly at all times and in all
contingencies,

EQ
t [Rt+1] = Rf,

or equivalently
EQ
t [Xt+1] = EQ

t [Rt+1 − Rf] = 0. (13.39)

Because Rt+1 is known at time t+1 we can rewrite (13.39) using the one-step-ahead
conditional change of measure mt+1|t :

EQ
t [Xt+1] = Et [Xt+1mt+1|t ] (13.40)

(refer also to equation (9.25)). Recall the definition of the variance-optimal measure
from (13.4)

mt+1|t := 1 − aXt+1

b

and substitute it into (13.40)

EQ
t [Xt+1] = Et [Xt+1] − aEt [X2

t+1]
b

.

Now recall from (13.6) that a = Et [Xt+1]/Et [X2
t+1], which immediately implies

that the right-hand side of the above equation is zero.
We should perhaps verify at this point that mt+1|t is a conditional change of

measure. To this end we have

Et [mt+1|t ] = Et

[
1 − aXt+1

b

]
= 1 − aEt [Xt+1]

b

= 1 − (Et [Xt+1])2/Et [X2
t+1]

b
= 1,

by virtue of (13.6) and (13.7), as required by condition (9.26).
Finally, and most importantly, we need mt+1|t > 0 so that all risk-neutral proba-

bilities are non-negative. From the definition of mt+1|t this implies

1 − aXt+1

b
> 0.

Now, b is always positive, therefore we have

1 > aXt+1, (13.41)

which is the familiar bliss point condition (3.45) from Chapter 3. Thus as long as
(13.41) holds the variance-optimal measure Q is an equivalent martingale measure
and therefore Ht is guaranteed to be a no-arbitrage price of HT . If the bliss point
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condition (13.41) is violated, then Ht may or may not be a no-arbitrage price of
HT . The less frequent the rehedging the more of a problem this could pose. In
practice, however, unless the hedge is completely static, one is unlikely to encounter
a situation where H0 gives rise to arbitrage. To give a numerical example, on a
monthly horizon the FTSE 100 returns between 1984 and 2001 averaged 0.9% with
a standard deviation of 4.8%, which corresponds to a bliss point of

4.82 + 0.92

0.9
= 26.5%,

whereas the maximum monthly return in that period was 21% (between 5 October
1998 and 4 November 1998).

When m takes both positive and negative values, we say that Q is a signed (rather
than equivalent) measure.

13.3 Towards Continuous Time

13.3.1 Brownian Motion Limit

What happens to the option price and the hedging error as the rehedging interval
goes to zero? We can find out by extending the binomial model programmed in
chapter6sect2.m to accommodate the multinomial model of this chapter. First of
all, we need to adjust the inputs.

%***********************%
% Transformation of %
% log returns %
%***********************%
UnitTime = Week;
R1safe = 1.04ˆ(1/52); % weekly safe return %
lnR1 = [0.060 0.040 0.02 0.000 ...

-0.02 -0.04 -0.06 ]; % weekly return %
PDistr = [0.013 0.067 0.273 ...

0.384 0.199 0.050 0.014]; % prob. density of weekly returns %
mu1 = lnR1*PDistr’; % expected weekly log return %
sig1 = sqrt(((lnR1-mu1).ˆ2)*PDistr’); % volatility of weekly log return %
dt = RehedgeInterval/UnitTime;
lnRdt = mu1*dt+(lnR1-mu1)*sqrt(dt); % log return over rehedging interval %
Rdt = exp(lnRdt);
Rdtsafe = R1safeˆdt;

Note that the scaling remains exactly the same as in Chapter 6, that is, we keep the
probabilities constant and only vary the size of log returns to keep the unconditional
mean and variance constant. Next we must calculate the risk-neutral probabilities.

%*******************%
% Risk-neutral %
% probabilities %
%*******************%
X = Rdt - Rdtsafe; % excess return %
EX= X*PDistr’; % E[X] %
EX2=(X.ˆ2)*PDistr’; % E[Xˆ2] %
sigX=sqrt(EX2-(EX)ˆ2); % st. dev. of returns %
kurt=((X-EX).ˆ4)*PDistr’/(sigXˆ4); % kurtosis of returns %
a=EX/EX2; eq. (13.6)
b=1-EXˆ2/EX2; eq. (13.7)
QDistr=PDistr.*((1-a*X)/b); eq. (13.4)
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Table 13.5. Towards continuous time. Hedging errors in the Brownian motion limit.

Computation
Frequency H0 ε2

0 Kurtosis time (s)

5 min 31.238 2.7 3.30 312
15 min 31.229 8.1 3.30 34
30 min 31.221 16.1 3.30 8.2
1 hour 31.205 31.9 3.29 2.1
1 day 31.022 243.5 3.29 0.00

Finally, we will adjust the main loop so that it evaluates the squared error to
maturity.

%*******************%
% option payoff %
%*******************%
MaxDim=1+(n-1)*(Tidx-1); % no. of cells at time T %
S_T = log(S0)+(Tidx-1)*highlnRdt ...

-(0:MaxDim-1)*dlnR; % log price at maturity %
S_T=exp(S_T); % stock price at maturity %
H=max([(S_T-strike); zeros(1,MaxDim)]); % option payoff at maturity %
eps2_D=zeros(length(S_T),1); eq. (13.17)
k_D = (b*Rdtsafeˆ2).ˆ(Tidx-1:-1:0); eq. (13.20)
%***************%
% main loop %
%***************%
tic; % start of computation %
for tt = Tidx-1 :-1 : 1
Hnext=H;
epsnext=eps2_D; % mean value in next period %
for ii = 1 : 1+(n-1)*(tt-1)
focus=Hnext(ii:ii+n-1)’;
H(ii)=(QDistr*focus)/Rdtsafe; eq. (13.8)
hedge=(PDistr.*X)*(focus-Rdtsafe*H(ii))/EX2; eq. (13.10)
HedgeError=focus’-hedge*X-Rdtsafe*H(ii); % hedging error %
ESRE=(HedgeError.*PDistr)*HedgeError’; % ESRE %
eps2_D(ii)=PDistr*epsnext(ii:ii+n-1)+k_D(tt+1)*ESRE; eq. (13.16)

end
end

The entire program is in the file chapter13sect3.m. The reader can now experiment
with changing theRehedgeInterval. The results are summarized in Table 13.5.
It is apparent that the hedging error tends to zero as we make the rehedging interval
shorter. This is very interesting, since each of the models we are looking at is
incomplete and the degree of incompleteness (in terms of the number of branches
in one period) does not change. Here we have a numerical ‘proof’ that continuous
rehedging in the Black–Scholes model is indeed riskless. Mathematically, we are
observing a very special case of the martingale representation theorem under the
variance-optimal measure.

13.3.2 Numerical Implementation at High Rehedging Frequencies

Returns on short time horizons in real financial markets do not follow the Brownian
limit, and modelling them brings new challenges. For example, while a weekly
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Table 13.6. Descriptive statistics of FTSE 100 returns in the period 1990–2000.
Reprinted from Oomen (2002).

Frequency Skewness Kurtosis

1 min 1.6 3305
5 min −0.4 508

10 min −1.9 345
30 min −1.1 115
1 hour −0.3 84
1 day 0.05 5.4

return takes values within ±3 standard deviations, a 5 min return is spread over
±20 standard deviations, which is reflected in the increasing size of kurtosis at
shorter time intervals seen in Table 13.6. The wider spread of return values requires
a higher number of branches in the stock price lattice. To model 5 min returns
accurately one may have to use as many as n = 100 values of the return in any
one period. With more branches and more time periods one is facing very long
computational times if one uses the straightforward multinomial tree and backward
recursion.

The problem can be alleviated by using the fast Fourier transform method de-
scribed in Chapter 7. Recall the Fourier transform pricing formula (7.18),

H0 = F (F −1(HT ) × (
√
nF (price kernel))T ),

which allows us to ‘hop’ from HT straight to H0. In our case the price kernel
vector will contain the variance-optimal probabilities divided by the risk-free return
at the top with the remaining entries being padded by zeros. It is important to bear
in mind that the Fourier pricing formula will only work with equidistantly spaced
log returns because the discrete Fourier transform itself is based on evenly spaced
numbers on a circle. The program chapter13sect3a.m demonstrates the working of
Fourier pricing in the septanomial model of Section 13.1.

If FFT makes the calculation of H0 relatively straightforward, computing the
squared error process is an entirely different matter. To be able to evaluate ε2

0
one must know the mean value process H in every node of the stock price lattice,
not just at the beginning. Computing all the values of H is bound to be time-
consuming no matter how one does it. To make the computation feasible at high
rehedging frequencies we have to be selective about the values of H that we want to
consider. Section 13.1.10 tells us that one-period errors close to maturity contribute
relatively more to the total error. Furthermore, the values of E[ESREt (Ht+1)] for
t small do not seem to change very much. Hence a good strategy might be to
create a time grid that has more time points at maturity and progressively fewer
points away from maturity, then compute Ht+1 at these selected time points using
the Fourier formula, then evaluate ESREt (Ht+1) using standard regression node
by node, and then compute E[ESREt (Ht+1)] again using the Fourier formula (this
time with objective probabilities and without discounting). The MATLAB program
chapter13sect3b.m applies the accelerated algorithm to a model calibrated on FTSE
100 Index data with 5 min rehedging interval. For comparison (if you have a spare
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Table 13.7. Comparison of hedging errors between a model with
observed market returns and a model with lognormal returns.

Market model Black–Scholes model

H0 110.08 110.13

ε2
0 87±1 3.8

kurtosis 50 3

Toft’s estimate of ε2
0 92 3.8

delta 0.4793 0.4786
SR = 0.5 price range 105.4–114.7 109.2–111.1

afternoon), the same computation using backward recursion in the multinomial
lattice is in the file chapter13sect3c.m.

We are most interested in the results. We are pricing a European call option on
the FTSE 100 Equity Index. The current value (on 26 February 2003) of the index
is S0 = 3576, the option is struck at 3625 and expires on 17 April 2003, currently
with 33 trading days to maturity. We will hedge once in 5 min and consider two
distributions for the returns. The market model will use the historical distribution
of 5 min returns over the period January 2002 to January 2003, the Black–Scholes
model will use the lognormal distribution with the same mean and variance. For
both models we calculate the mean value, the hedging error and the optimal delta
and give a price range corresponding to a hedging strategy with Sharpe ratio equal
to 0.5. The results are summarized in Table 13.7.

Conversely, one could ask what is the risk compensation required by traders who
sell the option. The option in question had an ask price of 139, this implies

SR = 139 − 110√
87

= 3.1,

which seems rather high. We have not incorporated any transaction costs, however,
which would make the option less attractive to hedge and the risk premium would
then drop.

13.3.3 Continuous Hedging Is Not Riskless After All

The analysis of the preceding section applied at 1 min intervals turns up ε2
0 = 65

for the market model compared with ε2
0 = 0.8 for the Black–Scholes model. By all

accounts frequent hedging in reality is not riskless, even though it would have been
in the Black–Scholes model. This idea is pursued theoretically in Exercises 13.16–
13.18.

13.3.4 Limiting Properties of the Mean Value Process H

It is somewhat surprising that even in the presence of jumps the mean value process
is close to the Black–Scholes values. This section outlines the mathematical forces
that push H towards the Black–Scholes price. The basic idea is that the distribution
of the log return XN,�t := ln R1,�t + · · · + ln RN,�t converges to normal under
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some circumstances when ln Ri,�t are IID. One limit of interest takes N → ∞
for �t fixed and can be viewed as facing longer and longer time to maturity with
fixed rebalancing frequency. In this case the limiting distribution is always normal:
(XN,�t − E[XN,�t ])/

√
Var(XN,�t ) → N(0, 1). Depending on how far the one-

period log return is from normality we will need smaller or larger N to achieve
normality in the limit. In the extreme case when the one-period log return is normal
we have normality for all N . The second limiting case is more complicated, it takes
N → ∞ and �t → 0 such that N�t = T remains fixed. This limit corresponds
to continuous trading with a fixed maturity. The result is a not necessarily normal
distribution; this crucially depends on how non-normal the returns become as �t →
0. In general we are only guaranteed that the limit (if it exists) is an infinitely divisible
distribution.

Example 13.2. Take

ln R�t = (µ − σ 2/p)�t − Γ (σ 2�t/p2, p),

where Γ (σ 2�t/p2, p) represents a random variable Z with density

f (z) = zσ
2�t/p2−1e−z/p

Γ (σ 2�t/p2)pσ 2�t/p2 .

If ln Ri,�t are IID with distribution Z, then one can show that

ln R1,�t + · · · + ln RN,�t =
(
µ − σ 2

p

)
N�t − Γ

(
σ 2N�t

p2 , p

)

=
(
µ − σ 2

p

)
T − Γ

(
σ 2T

p2 , p

)
.

The reason why ln R1,�t + · · · + ln RN,�t does not tend to normal as �t →
0 is that Γ (σ 2�t/p2, p) becomes highly skewed for �t → 0 and this in-
creasing degree of non-normality offsets the increasing number of summands in
ln R1,�t + · · · + ln RN,�t .

In the present setting the central limit theorem is applied under the variance-
optimal measure Q. It is easy to verify that if stock returns are IID under P and the
interest rate is deterministic, then the stock returns will be IID under Q as well. In
turn this implies that log returns are IID under Q.

Moreover, by construction we have EQ[R] = Rf (see equation (13.39)). We know
from the Taylor expansion that as long as the returns are within ±10%, we will have
ln R = R − 1, and therefore also EQ[ln R] = r with very good precision. Finally,
for the small values of returns that one observes on daily horizons, it is the case that
VarQ(ln R) is very close to Var(R).

The mathematical machinery is provided by convergence in distribution. The
central limit theorem implies that

XN,�t =
∑N

i=1 ln Ri,�t − NEQ[ln R�t ]√
N VarQ(ln R�t)
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converges to a standard normal variable X in distribution for �t fixed as N increases
to infinity. This in turn implies that for any bounded continuous function f ,

lim
N→∞ EQ[f (XN,�t )] → EQ[f (X)].

A call option payoff is not bounded from above but we know that EQ[f (X)] is finite
and therefore the error from truncating f at a very high value can be made arbitrarily
small. The result is the Black–Scholes formula with

rBS := EQ[ln R] ≈ r and σBS :=
√

VarQ(ln R) ≈ Var(R).

The practical implication of all this is that one should expect the mean value
process to be very close to the conventional Black–Scholes value when the time to
maturity is large, even if the log returns over short horizons have high kurtosis.

13.4 Derivation of Optimal Hedging Strategy

We wish to find the optimal control to minimize the expected squared replication
error,

min
x,θ0,...,θT−1

E[(V x,θ
T − HT )

2], (13.42)

where V
x,θ
T is the time T value of a self-financing portfolio generated by initial

wealth x and trading strategy {θt }t=0,...,T−1 denoting number of shares.

13.4.1 First Attempt at a Solution

To illustrate this problem let us consider a very simple example with three dates
t = 0, 1, 2, two basis assets (stock and bond) and one focus asset to be hedged
(call it option). We will assume that the stock return is either high Ru = 1.2 or low
Rd = 1.0 and that the risk-free return is Rf = 1.05. The initial stock price is S0 = 1
and there are no dividends. At time t + 1 the value of the (self-financing) hedging
portfolio is

Vt+1 = VtRf + θtSt (Rt+1 − Rf);
thus depending on the realization of the stock return the wealth evolves as follows:

V0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
V1(u) = V0Rf + θ0S0(Ru −Rf)

{
V2(uu) = V1(u)Rf + θ1(u)S1(u)(Ru −Rf),

V2(ud) = V1(u)Rf + θ1(u)S1(u)(Rd −Rf),

V1(d) = V0Rf + θ0S0(Rd −Rf)

{
V2(du) = V1(d)Rf + θ1(d)S1(d)(Ru −Rf),

V2(dd) = V1(d)Rf + θ1(d)S1(d)(Rd −Rf).

and numerically

V0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
V1(u) = 1.05V0 + 0.15θ0

{
V2(uu) = 1.1025V0 + 0.1575θ0 + 0.18θ1(u),

V2(ud) = 1.1025V0 + 0.1575θ0 − 0.06θ1(u),

V1(d) = 1.05V0 − 0.05θ0

{
V2(du) = 1.1025V0 − 0.0525θ0 + 0.15θ1(d),

V2(dd) = 1.1025V0 − 0.0525θ0 − 0.05θ1(d).
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Suppose we are hedging a binary call option with strike K = 1.1, such an option
will pay

H2(uu) = 1, H2(ud) = 1, H2(du) = 1, H2(dd) = 0.

Suppose further that stock returns are independent and that high and low returns are
equally likely. Then we have

min
x,θ0,...,θT−1

E[(V x,θ
T − HT )

2]
= min

V0,θ0,θ1(u),θ1(d)
[ 1

4 (V2(uu) − H2(uu))2 + 1
4 (V2(ud) − H2(ud))2

+ 1
4 (V2(du) − H2(du))2 + 1

4 (V2(dd) − H2(dd))2].
Closer inspection reveals that this problem has all the features of one-period hedging.
In matrix notation:

V2 = V0

⎡
⎢⎢⎣

1.1025
1.1025
1.1025
1.1025

⎤
⎥⎥⎦+ θ0

⎡
⎢⎢⎣

0.1575
0.1575

−0.0525
−0.0525

⎤
⎥⎥⎦+ θ1(u)

⎡
⎢⎢⎣

0.18
−0.06

0
0

⎤
⎥⎥⎦+ θ1(d)

⎡
⎢⎢⎣

0
0

0.15
−0.05

⎤
⎥⎥⎦ ,

H2 =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ ,

ε = V2 − H2,

min
V0,θ0,θ1(u),θ1(d)

ε2(uu) + ε2(ud) + ε2(du) + ε2(dd).

It is as if we are looking at a one-period hedging with four states: one risk-free and
three risky securities. As we discussed in Chapter 2, minimizing the sum of squared
replication errors is very similar to a least-squares regression. In this particular case,
the regression coefficients, the explanatory variables and the dependent variable are,
respectively,

β =

⎡
⎢⎢⎣

V0

θ0

θ1(u)
θ1(d)

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

1.1025 0.1575 0.18 0
1.1025 0.1575 −0.06 0
1.1025 −0.0525 0 0.15
1.1025 −0.0525 0 −0.05

⎤
⎥⎥⎦ , Y =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ .

We know that the optimal β is given by the formula

β = (X∗X)−1X∗Y =

⎡
⎢⎢⎣

0.3968
3.5714

0
5.0

⎤
⎥⎥⎦ . (13.43)

Exercise 13.19 asks the reader to verify this solution by constructing a perfect hedge.
The solution derived above is perfectly valid, yet it is hardly a practical one.

Imagine a model with 12 periods; such a model would have 212 = 4096 states
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and as many regression coefficients. Worse still, consider the model discussed in
Section 13.1 with seven values of stock return. This means we have to deal with
712 = 1.38×1010 states and only slightly fewer regression coefficients. Specifically,
the stock portfolio θt can now take 7t different values at time t , thus we have

70 + 71 + · · · + 711 = 712 − 1

6
≈ 2.3 × 109

portfolio coefficients. Regression with these dimensions is impossible to handle
even on the fastest supercomputers.

13.4.2 Importance of Dynamic Programming

To reduce the dimensionality of the problem one has to approach it period by period
starting from the terminal date. One first finds the optimal value of θT−1 givenVT−1,
then the optimal value of θT−2 given VT−2 (taking into account the optimal value
of θT−1), etc. Such a recursive approach to solving optimal decision problems
is generally called dynamic programming and it was pioneered in the 1950s by
Richard E. Bellman. In the next section we will show how the principle of dynamic
programming is applied to find the optimal dynamic mean–variance hedge.

13.4.3 Bellman’s Principle of Optimality

As we have seen above, for large problems it is futile to try to compute all θ coef-
ficients at once. Instead, we will perform this task sequentially, starting with θT−1.
Of course, θT−1 itself can take many different values depending on where we are in
the decision tree at T − 1, but the beauty of dynamic programming is that we will
handle all values of θT−1 separately and yet simultaneously. Before we begin in
earnest, let us provide a brief overview of what follows in this section.

Overview
First we will extract the one-period problem by using the law of iterated expectations,

min
x,θ0,...,θT−1

E[(V x,θ
T − HT )

2] = min
x,θ0,...,θT−1

E[ET−1[(V x,θ
T − HT )

2]],
that is, by positioning ourselves at an arbitrarily chosen node in the penultimate
period. Since we can choose θT−1 separately in each node at T − 1 we can isolate
the one-period decision further:

min
x,θ0,...,θT−1

E[ET−1[(V x,θ
T − HT )

2]] = min
x,θ0,...,θT−2

E[min
θT−1

ET−1[(V x,θ
T − HT )

2]].
The next step is to evaluate

JT−1 := min
θT−1

ET−1[(V x,θ
T − HT )

2], (13.44)

where JT−1 is the smallest possible expected squared replication error. We will
obtain one value of JT−1 and one value of the optimal hedging strategy θT−1 for
each node at T − 1. Having computed JT−1 our problem is now transformed to
solving

min
x,θ0,...,θT−2

E[JT−1].
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We will repeat the procedure above, positioning ourselves at an arbitrary node at
T − 2 and by the same reasoning we will obtain

min
x,θ0,...,θT−2

E[JT−1] = min
x,θ0,...,θT−3

E
[

min
θT−2

ET−2[JT−1]
]
.

Let us call the optimized value of the corresponding one-period problem JT−2:

JT−2 := min
θT−2

ET−2[JT−1]. (13.45)

A general pattern begins to emerge. If we denote

JT = (V
x,θ
T − HT )

2, (13.46)

then we have created a recursive structure such that the optimal hedging strategy is
obtained from a series of one-period problems,

Jt = min
θt

Et [Jt+1],
and at the same time

min
x,θ0,...,θT−1

E[(V x,θ
T − HT )

2] = min
x

J0.

The above procedure describes the general principle behind dynamic program-
ming. But this procedure is only useful if Jt depends on a relatively small number
of state variables for all t . Even if that is the case, it is not at all clear how one
will solve the optimization Jt = minθt Et [Jt+1]. We will now briefly describe what
happens as one solves the one-period optimization problems. Once we perform the
optimization in (13.44) we obtain

JT−1 = kD
T−1(V

D
T−1 − HT−1)

2 + (εD
T−1)

2,

where kT−1, HT−1 and ε2
T−1 depend only on the stock price and the calendar time.

At this stage we notice with disappointment that the form of JT−1 is different from
that of JT in (13.46). With the new functional form of JT−1 we now perform the
optimization in (13.45). The good news is that

JT−2 = kD
T−2(V

D
T−2 − HT−2)

2 + (εD
T−2)

2,

that is, JT−2 has exactly the same form as JT−1. Consequently, from now on when
computing JT−3, θT−3, JT−4, θT−4, etc., we can recycle the formulae derived for
JT−2 and θT−2—no more computations are needed.

13.4.4 One-Period Optimization

Let us now turn our attention to the one-period optimization problem:

Jt = min
θt

Et [Jt+1].
To be able to solve this problem we need to know the dependence of Jt+1 on θt .
Suppose that

Jt+1 = kD
t+1(V

D
t+1 − Ht+1) + (εD

t+1)
2, (13.47)

with kt+1, Ht+1 and εt+1 given exogenously. This assumption certainly holds true
for t + 1 = T (recall that kT = 1, ε2

T = 0, and HT is the option payoff). Exactly
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how Jt+1 is affected by the choice of the delta hedge θt is given by the self-financing
condition,

V D
t+1 = Rf tV

D
t + θtStXt+1, (13.48)

where Xt+1 =Rt+1−Rf t is the excess return. To see the dependence of Et [Jt+1] on
θt we need to substitute (13.48) into (13.47) and evaluate the expectation Et [Jt+1].
Before we do this, it is useful to introduce the following substitutions to save space:

θ = θtSt ,

V = Rf tV
D
t ,

Et [Jt+1] = Et [kt+1((V − Ht+1)
2 + 2θ(V − Ht+1)Xt+1 + θ2X2

t+1)]
= Et [kt+1(V − Ht+1)

2] + 2θEt [kt+1(V − Ht+1)Xt+1]
+ θ2Et [kt+1X

2
t+1].

Now we look for the θ minimizing Et [Jt+1]. The first-order condition reads

2Et [kD
t+1(V − Ht+1)Xt+1] + 2θEt [kD

t+1X
2
t+1] = 0

and from there

θD = Et [kt+1(Ht+1 − V )Xt+1]
Et [kt+1X

2
t+1]

, (13.49)

Jt = min
θ

Et [Jt+1] = Et [kt+1(V − Ht+1)
2] − (Et [kt+1(Ht+1 − V )X])2

Et [kt+1X2] .

(13.50)

One last manipulation is required, namely we need to transform Jt into the form

Jt = kD
t (V D

t − Ht)
2 + ε2

t .

It entails collecting all powers of V in (13.50) and completing the quadratic in V to
a square. From (13.50) this is straightforward but tedious; the resulting expressions
for k, H and ε2 are

kD
t = R2

f t

(
Et [kD

t+1] − (Et [kD
t+1Xt+1])2

Et [kD
t+1X

2
t+1]

)
, (13.51)

Ht = Et

[(
kD
t+1 − Et [kD

t+1Xt+1]kD
t+1Xt+1

Et [kD
t+1X

2
t+1]

)
Ht+1

Rf t

]/
kD
t

R2
f t

, (13.52)

(εD
t )

2 = Et [(εD
t+1)

2] + Et [kD
t+1H

2
t+1] − kD

t H 2
t − (Et [kD

t+1Xt+1Ht+1])2

Et [kD
t+1X

2
t+1]

. (13.53)

From (13.49) we obtain the optimal delta hedge:

θD
t = Et [kD

t+1(Ht+1 − Rf tV
D
t )Xt+1]

StEt [kD
t+1X

2
t+1]

.
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13.4.5 Variance-Optimal Measure

The reader will have noticed that we have managed to solve the problem without us-
ing the variance-optimal probabilities. In fact, equation (13.52) serves as a definition
for the variance-optimal change of measure:

mt+1|t := kD
t+1 − Et [kD

t+1Xt+1]kD
t+1Xt+1

Et [kD
t+1X

2
t+1]

/
kD
t

R2
f t

.

13.4.6 Special Case with IID Returns

The mean–variance hedging formulae will simplify further when the interest rate is
deterministic and returns are IID. In such a case the process {kt }t=0,...,T becomes
deterministic. To begin with, note that kT = 1 is a non-random variable. Now
assume that kt+1 is non-random and consider formula (13.51). Since kt+1 is a
constant, we can take it in front of the expectation in (13.51):

kD
t = R2

f t k
D
t+1

(
1 − (Et [Xt+1])2

Et [X2
t+1]

)
. (13.54)

For IID returns the expression

b := 1 − (Et [Xt+1])2

Et [X2
t+1]

is the same for all nodes at time t; by assumption, Rf t is non-random and kt+1 is
constant, implying that kt , too, is constant across all the nodes at time t . So we
know that (i) kt+1 constant implies kt constant (for all t), and (ii) kT is constant.
Combining (i) and (ii) we deduce that kt is indeed constant for all t = 0, . . . , T .
This line of reasoning is called mathematical induction.

Because the process kt is deterministic, the hedging formulae will simplify too:

Ht = Et [(1 − aXt+1)Ht+1/Rf t ]
b

,

a := Et [Xt+1]
Et [X2

t+1]
, (13.55)

(εD
t )

2 = Et [(εD
t+1)

2] + kD
t+1Et [H 2

t+1] − kD
t H 2

t − kD
t+1

(Et [Xt+1Ht+1])2

Et [X2
t+1]

, (13.56)

θD
t = Et [(Ht+1 − Rf tV

D
t )Xt+1]

StEt [X2
t+1]

.

13.4.7 Interpretation of the Dynamically Optimal Hedging Formula

The dynamic programming solution finds the optimal hedging strategy, which hap-
pens to look quite different from the Black–Scholes hedge. To begin with, the
dynamically optimal hedge depends on the value of the replicating portfolio V D

t ,
whereas the Black–Scholes hedge only depends on St and t . In the IID case one
can show that there is a very close link between the two strategies, which allows us
to compare the resulting replication errors.
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Recall the one-period optimization:

Jt = min
θt

Et [kD
t+1(V

D
t+1 − Ht+1)

2 + (εD
t+1)

2].

Because εD
t+1 is given exogenously (it does not depend on the trading strategy θt ),

we can take it in front of the ‘min’ sign:

Jt = Et [(εD
t+1)

2] + min
θt

Et [kD
t+1(V

D
t+1 − Ht+1)

2].

Furthermore, we know that in the case with IID stock returns, kD
t+1 is deterministic

and exogenous; we can therefore take it in front of the expectation and in front of
the ‘min’ sign:

Jt = Et [(εD
t+1)

2] + kD
t+1 min

θt
Et [(V D

t+1 − Ht+1)
2].

Writing down the self-financing condition V D
t+1 = RfV

D
t + θtStXt+1 we obtain

Jt = Et [(εD
t+1)

2] + kD
t+1 min

θt
Et [(RfV

D
t + θtStXt+1 − Ht+1)

2].

Regression Number 1

The expression

min
θt

Et [(RfV
D
t + θtStXt+1 − Ht+1)

2]
is essentially a least-squares regression with the dependent variable Ht+1 − RfV

D
t ,

the explanatory variable Xt+1 and a slope coefficient θtSt . The conditional proba-
bilities represent weights given to errors in individual states. If we denote

α = RfV
D
t , β = θtSt , X = Xt+1, Y = Ht+1,

then

min
θt

Et [(V D
t+1 − Ht+1)

2] = min
β

n∑
i=1

pi(α + βXi − Yi)
2. (13.58)

It becomes obvious that the dynamically optimal hedge βD is obtained as the slope
coefficient in an ordinary least-squares regression of Y − α onto one explanatory
variable X (without an intercept!):

βD =
∑n

i=1 pi(Yi − α)Xi∑n
i=1 piX

2
i

= Et [(Ht+1 − RfV
D
t )Xt+1]

Et [X2
t+1]

. (13.59)

Regression Number 2

It makes sense to ask how the resulting sum of squared errors will change with α.
We know that the sum of squared errors will be smallest when α is chosen from the
minimization

min
α,β

n∑
i=1

pi(α + βXi − Yi)
2, (13.60)
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that is, when α is the constant term from the regression of Y onto X and an intercept.
Let us denote the regression coefficients in (13.60) by αL and βL:

min
α,β

n∑
i=1

pi(α + βXi − Yi)
2 =

n∑
i=1

pi(α
L + βLXi − Yi)

2.

Using standard regression formulae for α and β we obtain

βL =
∑n

i=1 pi(Yi − Ȳ )(Xi − X̄)∑n
i=1 pi(Xi − X̄)2

= Covt (Xt+1, Ht+1)

Vart (Xt+1)
, (13.61)

X̄ =
n∑

i=1

piXi = Et [Xt+1],

Ȳ =
n∑

i=1

piYi = Et [Ht+1],

αL = Ȳ − βLX̄ = Et [Ht+1] − Covt (Xt+1, Ht+1)

Vart (Xt+1)
Et [Xt+1]. (13.62)

Comparison of Hedging Errors

The optimality of αL means that the locally optimal hedging error can be written as

n∑
i=1

pi(α + βLXi − Yi)
2 = (α − αL)2 +

n∑
i=1

pi(α
L + βLXi − Yi)

2. (13.63)

This expression is very useful because the second term on the right-hand side is the
smallest possible error.

The optimality of βD implies

n∑
i=1

pi(βXi+α−Yi)
2 =

( n∑
i=1

piX
2
i

)
(βD−β)2+

n∑
i=1

pi(β
DXi+α−Yi)

2 (13.64)

for any β. Choosing β = βL in (13.64) we have

n∑
i=1

pi(β
LXi + α − Yi)

2

=
( n∑

i=1

piX
2
i

)
(βD − βL)2 +

7∑
i=1

pi(β
DXi + α − Yi)

2. (13.65)

Now let us evaluate (βD − βL)2 explicitly. Substituting from (13.59) and (13.61)
we find

(βD − βL)2 = (α − αL)2 (
∑n

i=1 piXi)
2

(
∑n

i=1 piX
2
i )

2
. (13.66)

Finally, in equation (13.65) substitute for
∑n

i=1 pi(β
LXi +α−Yi)

2 using equation
(13.63) and plug in the value of (βD − βL)2 using (13.66). This gives the desired



13.4. Derivation of Optimal Hedging Strategy 317

expression for the dynamically optimal hedging error:

n∑
i=1

pi(α + βDXi − Yi)
2

=
(

1 − (
∑n

i=1 piXi)
2∑n

i=1 piX
2
i

)
(α − αL)2 +

n∑
i=1

pi(α
L + βLXi − Yi)

2. (13.67)

IID Hedging Theorem

Equations (13.63) and (13.67) allow us to compare the size of the hedging error in
the dynamically optimal (β = βD) and the locally optimal (β = βL) cases.

Theorem 13.3 (IID hedging theorem). For βD, αL and βL defined in equations
(13.59), (13.62) and (13.61) we have

n∑
i=1

pi(α + βDXi − Yi)
2 = b(α − αL)2 +

n∑
i=1

pi(α
L + βLXi − Yi)

2, (13.68)

n∑
i=1

pi(α + βLXi − Yi)
2 = (α − αL)2 +

n∑
i=1

pi(α
L + βLXi − Yi)

2, (13.69)

with b =
(

1 − (
∑n

i=1 piXi)
2∑n

i=1 piX
2
i

)
. (13.70)

Moreover,
n∑

i=1

pi(α
L + βLXi − Yi)

2 =
n∑

i=1

piY
2
i − b(αL)2 − (

∑n
i=1 piXiHi)

2∑n
i=1 piX

2
i

(13.71)

by definition of αL and βL.

Proof. The proof of (13.68)–(13.70) is between equations (13.58) and (13.67).
Equation (13.71) follows from (13.67) by setting α = 0. We just need to real-
ize that the optimality of βD implies

n∑
i=1

pi(α + βDXi − Yi)
2 =

n∑
i=1

pi(Yi − α)2 −
n∑

i=1

pi(β
DXi)

2.

It is now enough to realize that Ht = αL/Rf, θD
t = βD/St , θL

t = βL/St and the
hedging theorem immediately yields most of the formulae we used in Section 13.1.
In particular, equations (13.68) and (13.69) read

Et [(V D
t+1 − Ht+1)

2] = bR2
f (V

D
t − Ht)

2 + ESREt (Ht+1), (13.72)

Et [(V L
t+1 − Ht+1)

2] = R2
f (V

L
t − Ht)

2 + ESREt (Ht+1), (13.73)

where
ESREt (Ht+1) = Et [(RfHt + θL

t StXt+1 − Ht+1)
2].
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Define ε2
t as the expected squared replication error to maturity conditional on

Vt = Ht . The recursive application of (13.72), (13.73) gives

Et [(VT − HT )
2] = kt (Vt − Ht)

2 + ε2
t ,

ε2
t = Et [ε2

t+1] + kt+1ESREt (Ht+1),

where we take k = kD for the dynamically optimal strategy and k = kL for the
locally optimal strategy:

kD
t = (bR2

f )
T−t , kL

t = (R2
f )

T−t .

13.5 Summary

• In practice, option hedging is not riskless; it is therefore important to un-
derstand the size of hedging errors associated with a given hedging strategy.
There are several ways of measuring the resulting hedging error. In this chap-
ter we have concentrated on the mean–variance trade-off. The variance of
the hedging error is all one needs to know if options are priced so that the
expected hedging error is zero. However, for different strategies mean zero is
achieved at different prices; therefore, in general the relevant criterion is the
ratio of mean to standard deviation of the hedging error at a given price.

• The mean–variance trade-off of an option hedging strategy can be evaluated in
two ways, either by a Monte Carlo simulation or by backward recursion on a
state space grid. Both methods have their merits and disadvantages. The for-
mer is very easy to implement even with many state variables, but it typically
requires many random experiments to arrive at reliable results, particularly
with fat-tailed return distributions. The grid method, on the other hand, is
faster and guarantees a ‘precise’ result. On the downside, its implementation
requires more sophistication, particularly with many (that is, more than two)
state variables.

• Once we have decided on the optimality criterion, in this case the Sharpe ratio
of the hedging error, it makes sense to inquire what is the optimal hedging
strategy. The hedge minimizing the expected squared replication error is
called dynamically optimal hedge. A closely related suboptimal strategy is
the locally optimal hedge.

• Suppose one wishes to hedge a derivative security with payoff HT by con-
structing a self-financing portfolio with value Vt , t = 0, . . . , T . The solu-
tion evolves around the mean value process Ht , which turns out to be the
discrete-time analogue of the Black–Scholes value. Both the dynamically
optimal portfolio and the locally optimal portfolio are trying to replicate Ht ,
the difference is in the delta they choose. Both strategies are minimizing
Et−1[(Vt − Ht)

2]. The locally optimal strategy asks ‘if one could choose
the value of Vt−1 to minimize the one-step hedging error Et−1[(Vt − Ht)

2],
what would Vt−1 be?’. The answer is Vt−1 = Ht−1 and the corresponding
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delta would be the locally optimal delta. In other words Ht−1 is obtained as
the intercept from the least-squares regression of Ht onto the excess stock
return, and the locally optimal delta is the slope coefficient in that regression.
But the locally optimal strategy uses the same delta even when Vt−1 �= Ht−1,
whereas the dynamically optimal strategy adjusts the delta for the discrepancy
Vt−1 − Ht−1.

• Thus if Vt−1 = Ht−1, the expected squared hedging error in both strategies
is the same. If Vt−1 �= Ht−1, then we add an extra term proportional to
(Ht−1 − Vt−1)

2. The constant of proportionality is 1 for the locally optimal
strategy and 1−R2 for the dynamically optimal strategy, where R2 is the non-
central ‘R2’ from the regression of the risk-free rate onto the excess return.
Empirically, this R2 is very small and from here it follows that the locally
optimal strategy is nearly as good as the dynamically optimal strategy in
terms of expected squared error.

• The risk of the optimal option hedging strategy is non-trivial, even if we ignore
transaction costs. For normally distributed log returns, Toft’s formula tells us
that the squared error is proportional to the expectation of the sum of squared
gamma at the rebalancing dates. For returns with higher kurtosis the squared
error can be approximated by adjusting Toft’s formula multiplied by the factor
(kurtosis − 1)/2.

• Dynamic programming is a powerful way of rephrasing a single optimization
problem with many control variables into a series of simpler mutually related
optimization problems each with a small number of control variables. The
relationship between individual stages in the resulting recursive procedure is
called Bellman’s principle of optimality. In our example we had to consider
three state variables: time to maturity, stock price, and the value of the hedging
portfolio. At each point of this three-dimensional grid we had to maximize
a quadratic function of future wealth which amounted to computing a least-
squares regression of the mean value process onto the excess return and an
intercept. The slope coefficient turned out to be the locally optimal delta and
the discounted intercept constituted the mean value process for the next stage
of optimization.

13.6 Notes

Boyle and Emanuel (1980) were the first to link the one-period squared hedging
error to an option’s gamma squared, followed by Leland (1985) and Grannan and
Swindle (1996). Toft (1996) shows that the expected squared replication error to
maturity is proportional to E[∑T

t=0 S4
t γ

2
t ], where γt is the Black–Scholes gamma at

time t and St is the stock price. This literature does not examine the optimality of
the discrete Black–Scholes strategy, merely its performance. An interesting early
paper on sequential regressions is Föllmer and Schweizer (1989).

The literature on mean-variance hedging tends to be very technical. The best place
to start are papers set in discrete time. Föllmer and Schweizer (1989) is an interesting
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early paper on sequential regressions. A dynamic programming solution is presented
in Bertsimas et al. (2001), Černý (2004b) and Černý and Kallsen (2007a). For
explicit solutions in continuous-time models with stochastic volatility see Černý and
Kallsen (2008b), Duffie and Richardson (1991), Heath et al. (2001), and Laurent and
Pham (1999). An explicit solution for Lévy-driven log returns is discussed in Černý
(2007) and Hubalek et al. (2006). A unified theory for discrete and continuous-
time models is presented in Černý and Kallsen (2007b); see also Černý and Kallsen
(2008a). Consult Černý and Kallsen (2007a) and Černý and Kallsen (2007b) for a
comprehensive list of bibliographic references.

13.7 Appendix: Expected Squared Hedging Error in
the Black–Scholes Model

Let C(t, St ) be the Black–Scholes price at time t ; for us it is an approximation of
Ht . Ht+�t will be approximated by C(t + �t, St+�t ), where �t = 1 week. From
the Taylor expansion,

C(t + �t, St+�t ) ≈ C(t, St ) + ∂C(t, St )

∂t
�t

+ ∂C(t, St )

∂St

(St+�t − St ) + 1

2

∂2C(t, St )

∂S2
t

(St+�t − St )
2.

Let us now construct a hedging portfolio with initial valueC(t, St ) and θt the number
of shares. The payoff of this portfolio will be

Vt+�t = (1 + r �t)C(t, St ) + θt (St+�t − (1 + r �t)St ).

The hedging error is the difference between Vt+�t and C(t + �t, St+�t ). Let us
evaluate that difference:

Vt+�t − C(t + �t, St+�t )

≈
(
rC(t, St ) − ∂C(t, St )

∂t
− rθtSt

)
�t +

(
θt − ∂C(t, St )

∂St

)
(St+�t − St )

− 1
2S

2
t

∂2C(t, St )

∂S2
t

(
St+�t − St

St

)2

. (13.74)

The last expression has non-zero mean. Specifically,

Et

[(
St+�t − St

St

)2]
= (µ�t)2 + σ 2 �t (13.75)

is of the order�t . Before proceeding further it is convenient to denote the percentage
increase in the stock price Z:

Z := St+�t − St

St

.
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The idea now is to collect all the �t terms in equation (13.74), taking into account
equation (13.75):(
rC− ∂C(t, St )

∂t
−rθtSt − 1

2σ
2S2

t

∂2C(t, St )

∂S2
t

)
�t+

(
θt − ∂C(t, St )

∂St

)
(St+�t −St )

− 1
2S

2
t

∂2C(t, St )

∂S2
t

(Z2 − Et [Z2] + (µ�t)2). (13.76)

Now if we choose θt to be the Black–Scholes delta, that is θt = ∂C(t, St )/∂St , then
the second term in (13.76) vanishes and we obtain

Vt+�t − C(t + �t, St+�t )

≈
(
rC − ∂C(t, St )

∂t
− rSt

∂C(t, St )

∂St

− 1
2σ

2S2
t

∂2C(t, St )

∂S2
t

)
�t

− 1
2S

2
t

∂2C(t, St )

∂S2
t

(Z2 − Et [Z2] + (µ�t)2).

In addition,

rC − ∂C(t, St )

∂t
− rSt

∂C(t, St )

∂St

− 1
2σ

2S2
t

∂2C(t, St )

∂S2
t

= 0

by virtue of the Black–Scholes PDE and hence we finally obtain

Vt+�t −C(t +�t, St+�t ) ≈ − 1
2S

2
t

∂2C(t, St )

∂S2
t

(Z2 − Et [Z2]+ (µ�t)2). (13.77)

Let us denote

γ = ∂2C(t, St )

∂S2
t

.

We will now evaluate the mean and variance of the hedging error:

Et [Vt+�t − C(t + �t, St+�t )] ≈ − 1
2γ S2

t (µ�t)2,

Vart (Vt+�t − C(t + �t, St+�t )) ≈ 1
4γ

2S4
t Et [(Z2 − Et [Z2])2].

The contribution from the variance is more significant. It is shown in Exercise 13.8
that Et [(Z2 − Et [Z2])2] can be expressed using mean, variance, skewness and kur-
tosis of Z as follows:

Et [(Z2 − Et [Z2])2]

= (Stdt (Z))4
(

Kurt(Z) − 1 + 4
Et [Z]

Stdt (Z)
Skew(Z) + 4

(
Et [Z]

Stdt (Z)

)2)
.

Recall that the kurtosis of a normal distribution is 3. Kurtosis of returns in our
example is 3.28. On the other hand the ratio of mean to standard deviation is 0.11
and the skewness is −0.07, so the second and third terms are −0.03 and 0.09. It
is customary to neglect the last two terms, but it may not always be safe to do so,
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Table 13.8. A sample path of stock returns.

ln(S1/S0) ln(S2/S1) ln(S3/S2) ln(S4/S3) ln(S5/S4) ln(S6/S5)

−0.02 0.04 0.00 −0.02 0.00 0.02

especially if returns have a positive skew. To conclude, the one-period expected
squared replication is

Et [(Vt+�t − C(t + �t, St+�t ))
2]

= (Et [Vt+�t − C(t + �t, St+�t )])2 + Vart (Vt+�t − C(t + �t, St+�t ))

≈ 1
4γ

2
t S

4
t σ̃

4
(

Kurt(Z) − 1 + 4
µ̃

σ̃
Skew(Z) + 4

(
µ̃

σ̃

)2

+
(
µ̃

σ̃

)4)
,

where X is the rate of stock return and µ̃, σ̃ are its mean and standard deviation.
Neglecting the second-order terms we obtain the standard result:

ESREt (Ht+1) ≈ ( 1
2γtS

2
t Vart (Rt+1))

2(Kurtt (Rt+1) − 1). (13.78)

13.8 Exercises

Exercise 13.1 (stock price lattice). Generate the stock price lattice of Figure 13.3
in a spreadsheet.

Exercise 13.2 (mean value process). Extend the spreadsheet of Exercise 13.1 to in-
clude the mean value process in a form similar to Figure 13.5. (Hint 1: SUMPROD-
UCT(A1:A7,B1:B7) will return a scalar product of the two vectors. You can start
from spreadsheet Chapter13Exercise2a.xls. Hint 2: if you are really stuck, start
from Chapter13Exercise2b.xls.)

Exercise 13.3 (delta hedge). Building on the previous exercises implement the
locally optimal delta hedge θL in a spreadsheet and compare it with the continuous-
time Black–Scholes delta à la Figure 13.6.

Exercise 13.4 (simulation of hedging shortfall). Recompute the shortfall of the
dynamically optimal, locally optimal and the Black–Scholes hedging strategy for
the sequence of stock returns depicted in Table 13.8.

Exercise 13.5 (one-period expected squared replication error (ESRE)). Build-
ing on the spreadsheet developed in Exercises 13.1–13.3 implement the lattice of
one-period expected squared hedging errors. For this purpose you may want to use
the formula

ESREt (Ht+1) = Et [H 2
t+1] − bR2

f H
2
t − (aEt [Xt+1Ht+1])2

1 − b
,

derived in the ‘IID hedging theorem’ on p. 317, equation (13.71). (Hint: to
calculate the last term you may need to use a command similar to SUMPROD-
UCT(A1:A7,B1:B7,C1:C7).)



13.8. Exercises 323

Exercise 13.6 (squared error process). Use the recursive formula

ε2
t = Et [ε2

t+1] + kt+1ESREt (Ht+1),

εT = 0,

with

kL
t = R

2(T−t)
f = 1.0015T−t ,

kD
t = R

2(T−t)
f bT−t = 0.9962T−t ,

to generate the dynamically optimal and locally optimal squared hedging errors to
maturity in the spreadsheet of Exercise 13.5.

Exercise 13.7 (variance of squared deviations). Denoting µ = E[X] and σ 2 =
E[(X − µ)2] show that

Var((X − µ)2) = σ 4(Kurt(X) − 1).

Exercise 13.8. Using the elementary properties of expectation show that

Var(X2) = E[(X2 − E[X2])2] = σ 4
(

Kurt(X) − 1 + 4
µ

σ
Skew(X) + 4

(
µ

σ

)2)
,

where µ = E[X] and σ 2 = E[(X − µ)2].
Exercise 13.9 (Toft’s formula). We have seen in equation (13.27) that the expected
squared error ε2

0 of the locally optimal hedging strategy can be expressed as

ε2
0 =

T−1∑
t=0

kL
t+1E[ESREt (Ht+1)], (13.79)

kL
t = R

2(T−t)
f .

On the other hand, we have shown in equation (13.78) that ESREt (Ht+1) can be
approximated using Black–Scholes gamma as follows:

ESREt [Ht+1] ≈ ( 1
2γtS

2
t Vart (Rt+1))

2(Kurtt (Rt+1) − 1). (13.80)

With IID stock returns, (Vart (Rt+1))
2(Kurtt (Rt+1) − 1) is the same in every period

and in every node, we shall denote it without time subscript

(Var(R))2(Kurt(R) − 1).

Substitution of (13.80) into (13.79) gives Toft’s expression for the variance of hedg-
ing error in a discretely rebalanced Black–Scholes model without transaction costs:

ε2
0 ≈

(
Kurt(R) − 1

2

)
1
2 (Var(R))2

T−1∑
t=0

kt+1E[(γtS2
t )

2]
︸ ︷︷ ︸
Toft’s formula for expected squared error

in discretely rebalanced BS model

.
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Toft (1996) shows that with lognormally distributed returns the expression E[γtS2
t ]

has the form

E[(γtS2
t )

2] = S2
0 e2µt

2πσ 2
√
T 2 − t2

exp

(
− (λt + 1

2σ
2T )2 + 2σ 2tλt

σ 2(T + t)

)
,

λt = ln(S0/K) + r(T − t) + µt,

where r is the risk-free rate per unit of time, µ is the expected rate of return per unit
of time, and σ 2 is the variance of log return per unit of time.

For the model of this chapter evaluate E[γtS2
t ] for t = 0, 1, 2, 3, 4, 5 weeks and

enter the values of

E[ESREt (Ht+1)] ≈ (Kurt(R) − 1)( 1
2 Var(R))2E[(γtS2

t )
2]

in a table similar to Table 13.4.

Exercise 13.10 (excess kurtosis in Toft’s formula). Suppose that we are hedging
a European call option by trading once a day and that the risk-free rate is 0%.
Toft’s formula for discretely hedged Black–Scholes model gives an expected squared
hedging error of 100.00. From the data we find that the kurtosis of daily stock returns
is 6.25. What is the (approximate) value of the true squared hedging error?

Exercise 13.11 (hedging errors for the S&P500 Index). Construct a realistic
tree to analyse daily rehedging of an S&P500 put option with one year to maturity.
Assume that the option is sold at the money. Compute the expected squared hedging
error of the dynamically and locally optimal strategies. Assuming that the option
is priced in such a way that its implied volatility (annualized) is three percentage
points above the historical volatility, compute the Sharpe ratio of the dynamically
optimal hedge and contrast it with the Sharpe ratio of the locally optimal hedge.

Exercise 13.12 (equivalence of variance-optimal measure). The file chapter12-
exe12data.m contains a histogram of FTSE 100 daily log returns. Assuming that log
returns follow the distribution indicated in the file and assuming that the risk-free
rate is 0%, find out whether the variance-optimal probabilities in the model with
daily rehedging are positive.

Exercise 13.13 (skewness and kurtosis). Evaluate the first four moments (mean,
standard deviation, skewness and kurtosis) of the risky return in this chapter both
under the objective and under the risk-neutral probability measure.

Exercise 13.14 (skewness and kurtosis in empirical data). Evaluate the first four
moments (mean, standard deviation, skewness and kurtosis) in the actual FTSE 100
data under both the objective and the risk-neutral probability measure.

Exercise 13.15 (calibration of returns from empirical data). The code chapter13-
sect3.m assumes that weekly returns can have seven different values. Write a code
that approximates the historical distribution of weekly FTSE 100 returns with a
theoretical distribution with n different values, such that log returns of the theoretical
distribution are spaced equidistantly. What value of n is required in order that the
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theoretical moments faithfully reproduce the population moments? (Try n = 500,
100, 50, 10, 5.) Adjust the code so that it can handle other rebalancing frequencies
(daily, monthly, etc.).

Exercise 13.16 (compound Poisson jump model). Consider a model where log re-
turns have two Poisson jumps, either −2% or −4%, with equal intensity. Following
Section 6.3 calibrate the model to a given volatility σ and mean return µ.

Exercise 13.17 (variance-optimal measure in a jump model). For the calibrated
model of the previous exercise compute the variance-optimal probabilities q(�t)

(assume r = 0) and deduce the risk-neutral intensities of the two jumps. Pick an
option with a suitable strike and initial stock value and evaluate the risk-neutral
expectation Ht = EQ

t [HT ] in this model.

Exercise 13.18 (hedging error in a continuous-time model with two jumps).
With Ht in hand from the previous exercise find

Gt = lim
�t→0

ESREt (Ht+�t )

�t
.

Decide whether

ε2
0 = E

[∫ T

0
Gt dt

]
is zero or positive.

Exercise 13.19 (optimal hedge in a complete market). Verify that (13.43) is the
correct solution by constructing a perfect hedge.

Exercise 13.20 (simple evaluation of locally optimal strategy). For a given but
arbitrary hedging strategy θ that only depends on the stock price and calendar time
evaluate its expected squared replication error. (Hint: define the mean value process
Hθ such that

Et [RfH
θ
t + θtStXt+1 − Hθ

t+1] = 0

and show that

Et [(Vt+1 − Hθ
t+1)

2] = R2
f (Vt − Hθ

t )
2 + Et [(RfH

θ
t + θtStXt+1 − Hθ

t+1)
2].)



Appendix A
Calculus

This appendix reviews essential topics in calculus: functions and their derivatives,
the Taylor expansion and its application to optimization, and integrals. It is not
particularly detailed or rigorous and the reader should consult Binmore and Davies
(2001) or a similar textbook for more information.

A.1 Notation

A.1.1 Real Numbers

In calculus we work predominantly with real numbers. The set of real numbers is
denoted by R. Occasionally, we need an n-tuple of real numbers (a vector) and the
set of all such n-tuples is denoted by R

n. Another way of saying ‘x is a real number’
is to write x ∈ R. The positive and negative parts of x are defined as follows:

x+ := max(x, 0), x− := − max(−x, 0).

This definition implies

x = x+ − x−, |x| = x+ + x−.

A.1.2 Intervals

Intervals are sections of the real line, for example, ‘all numbers between 0 and 1’.
An interval which includes its endpoints is call closed and is denoted with square
brackets, for example, [0; 1]. An open interval does not include its endpoints and
is denoted with round brackets, for example, (0; 1). Examples of interval notation
are given below.

Normal notation Interval notation

a � x � b x ∈ [a; b]
a < x � b x ∈ (a; b]
a � x < b x ∈ [a; b)
a < x < b x ∈ (a; b)
a � x x ∈ [a; ∞)

x < b x ∈ (−∞; b)
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Figure A.1. Cumulative standard normal distribution function Φ(x).

A.1.3 Real Function of One Real Variable

These are the most simple functions one encounters in applications. A real function
of one real variable takes a real number and assigns to it another real number, for
example,

f (0) = 5,

f (1.5) = 8,

and so on. This defines the function f at only two points. More often we give a
general recipe, for example,

f (x) = 2x + 5.

Associated with every function is its domain of definition. Very often functions are
defined on the whole real line (that is, we can take any real number for x); however,
sometimes this is not practical or possible. For example,

f (x) = ln x

is only defined for x > 0. When performing mechanical manipulation with formulae
involving logarithms, one must be aware of this fact.

Sometimes functions are defined piecewise, for example,

f (x) = x + 2 for x > 0,

f (0) = 0,

f (x) = x3 − 1 for x < 0.

A.1.4 Examples of Functions

Apart from elementary functions like ln x, ex , xk , sin x, etc., there are a number
of transcendental functions that have application in finance. The transcendental
functions are usually defined as an integral or a solution to a specific differential
equation.
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Figure A.2. Graph of I3/2(x).

1. Cumulative standard normal distribution (see Figure A.1):

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt.

2. The modified Bessel function Iq(x) satisfies

x2I ′′
q (x) + xI ′

q(x) − (x2 + q2)Iq(x) = 0.

This function governs the distribution of future values of the short-term interest
rate in the Cox–Ingersoll–Ross model of the term structure (see Figure A.2).

3. Other special functions defined in a similar way include the Beta and Gamma
functions, the Exponential integral function, the Logarithmic integral func-
tion, the Legendre, Chebyshev, Jacobi, Hermite, Laguerre and Gegenbauer
functions, the Hypergeometric function, etc. See, for example, Abramowitz
and Stegun (1972).

A.1.5 Properties of Exponential and Logarithmic Functions

One should understand that the logarithmic and the exponential function are inverse
to each other, that is,

ln ex = x,

eln x = x.

The properties of the logarithm,

ln xy = ln x + ln y,

ln xα = α ln x,

follow from the more obvious properties of the exponential function,

e(x+y) = exey,
(ex)α = eαx.

It is advisable to know the above six identities by heart.
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A.2 Differentiation

A.2.1 Functions of One Variable

By differentiating a function we obtain its derivative. The derivative measures
the rate at which the target function changes with a small change in the variable.
Formally, it is a limit of

f (x + �x) − f (x)

�x

as we let �x take ever smaller values. The derivative is symbolically denoted

df (x)

dx
or f ′(x).

A.2.2 Calculation of Derivatives

It is worth memorizing the derivatives of the most frequently used functions:

Function f (x) Derivative f ′(x)

xα αxα−1

ex ex

ln x
1

x

sin x cos x

cos x − sin x

plus the following five rules:

1. (const.)′ = 0;

2. (f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x);

3.

(
f (x)

g(x)

)′
= f ′(x)g(x) − f (x)g′(x)

(g(x))2 ;

4. (f (g(x)))′ = f ′(g(x))g′(x).
A special case of rule 2 when g(x) = a is a constant function gives

5. (af (x))′ = af ′(x).

Example A.1. Differentiate
√
x.

Solution. We have to think of
√
x as x1/2. After that the result is obtained quickly

as

(x1/2)′ = 1
2x

1/2−1 = 1
2x

−1/2 = 1

2
√
x
.
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Example A.2. Let us differentiate ex/x.

Solution. We shall take f (x) = ex and g(x) = x−1 and apply rule 2. From the
table above

f ′(x) = ex,

g′(x) = −x−2,

and therefore (
ex

x

)′
= exx−1 − exx−2 = ex

x

(
1 − 1

x

)
.

Example A.3. Differentiate tan x.

Solution. We know that tan x = sin x/ cos x. Hence we set f (x) = sin x and
g(x) = cos x, and apply rule 3. From the table,

f ′(x) = cos x, g′(x) = − sin x,

and therefore (
sin x

cos x

)′
= cos2 x + sin2 x

cos2 x
= 1

cos2 x
.

A.2.3 Chain Rule

Rule 4 is called the chain rule and is probably the most difficult to understand,
because it may not be clear what f ′(g(x)) means. Calculation of f ′(g(x)) proceeds
in two steps.

1. Replace g(x) with y and calculate the derivative of f (y) with respect to y.
2. In f ′(y) replace y with g(x).

Example A.4. Differentiate
1

1 + √
x
.

Solution. We have to choose f and g so that

f (g(x)) = 1

1 + √
x
.

Let us take
g(x) = 1 + √

x

and

f (g(x)) = 1

g(x)
.

Now replace g(x) with y and calculate f ′(y):

f (y) = 1

y
, f ′(y) = − 1

y2 .
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Now we shall substitute g(x) in place of y:

f ′(g(x)) = − 1

(g(x))2 .

To complete the task, let us calculate g′(x):
g′(x) = (1 + √

x)′ = 1′ + (
√
x)′ = 0 + 1

2x
−1/2.

Combining all the pieces together we conclude that(
1

1 + √
x

)′
= (f (g(x)))′ = f ′(g(x))g′(x) = −

1
2x

−1/2

(1 + √
x)2

.

Another example for the chain rule, this time also utilizing properties of the
exponential and logarithmic function, is as follows.

Example A.5. Differentiate ax .

Solution. First we need to rewrite ax as an exponential function. We know that
a = eln a and therefore

ax = ex ln a.

Now we use rule 4, taking f (g(x)) = eg(x) and g(x) = x ln a. We have

f ′(g(x)) = eg(x),

g′(x) = ln a,

and hence
(ax)′ = (ex ln a)′ = ex ln a ln a = ax ln a.

A.2.4 Higher-Order Derivatives

Repeating the differentiation process n times, one obtains the nth derivative. The
notation for the nth derivative is

f (n)(x) or
dnf (x)

dxn
.

The second and third derivatives can be also denoted by f ′′ and f ′′′, respectively.
One computes higher-order derivatives by sequential application of the formula

f (n)(x) = df (n−1)(x)

dx
.

Example A.6. Calculate the third derivative of f (x) = e−ax .

Solution. We have

f ′(x) = −ae−ax,

f ′′(x) = (f ′(x))′ = a2e−ax,

f ′′′(x) = (f ′′(x))′ = −a3e−ax.
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A.3 Real Function of Several Real Variables

We start with an example of a function of two variables:

g(x, y) = −xy.

The domain of definition is in this case the whole real plane R
2. Some functions,

however, require restrictions on the domain of definition. For example,

g(x, y) = ln xy

is meaningfully defined only for xy > 0.
An example of an n-variable function is

g(x1, x2, . . . , xn) = x1 + x2 + · · · + xn.

A.3.1 Partial Differentiation

A partial derivative is defined as follows:

∂g(x1, x2, . . . , xn)

∂x1
:= lim

�x→0

g(x1 + �x, x2, . . . , xn) − g(x1, x2, . . . , xn)

�x
.

Comparing this definition with the definition of the normal derivative one can see
that the partial derivative is equal to the normal derivative if we regard all remaining
variables as constants.

Example A.7. For g(x1, x2) = x1 ln x2 find

∂g

∂x1
and

∂g

∂x2
.

Solution.
∂x1 ln x2

∂x1
= ln x2,

∂x1 ln x2

∂x2
= x1

x2
.

A.3.2 Higher-Order Derivatives

We can compose partial derivatives similarly as we can compose normal derivatives.
The notation is as follows:

∂

∂x1

∂g

∂x1
= ∂2g

∂x2
1

,
∂

∂x1

∂g

∂x2
= ∂2g

∂x1∂x2
,

∂

∂x1

∂2g

∂x1∂x2
= ∂3g

∂x2
1∂x2

, etc. (A.1)

Example A.8. Calculate
∂2(ex1 + ex2)

∂x1∂x2
.

Solution. First we will evaluate
∂(ex1 + ex2)

∂x2
= ex2 .
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The next step is to calculate

∂

∂x1

[
∂(ex1 + ex2)

∂x2

]
= ∂ex2

∂x1
= 0.

Note. For all well-behaved functions,

∂2g

∂xi∂xj
= ∂2g

∂xj ∂xi
.

A.3.3 Partial Derivatives Versus Total Derivatives: the Chain Rule

In certain financial models the formula

P = eA(t,T )+B(t,T )r

gives the price of a zero coupon discount bond at time t with maturity at time T if
the current spot rate is r . When looking at a complicated expression like

eA(t,T )+B(t,T )r ,

we need to be explicit about what is treated as a constant and what is treated as a
variable. For example, writing

P(t) = eA(t,T )+B(t,T )r

means that we take r and T as fixed. If we wanted to calculate the change of bond
price as a reaction to a small time movement, we would simply use an ordinary
derivative

dP(t)

dt
.

On the other hand, if we wished to consider the price as a function of current time
and current spot rate

P(r, t) = eA(t,T )+B(t,T )r ,

then the price sensitivity with respect to the time movement would be written as

∂P (r, t)

∂t
.

Of course, the two expressions dP(t)/dt and ∂P (r, t)/∂t are the same because both
of them treat r effectively as a constant.

Suppose now for a moment that r is not a constant, but it moves deterministically
with time, r(t). If we want to find the total price change as a result of a small time
movement, we have to use the so-called total derivative:

dP(r(t), t)

dt
.

By the chain rule, the total derivative can be evaluated as follows:

dP(r(t), t)

dt
= ∂P (r(t), t)

∂r(t)

dr(t)

dt
+ ∂P (r(t), t)

∂t
.
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A.4 Power Series Approximations

Very often one wants to know how the target function, say the price of a security,
responds to a small change in underlying variable, say the short-term interest rate.
The answer to this question is provided by the Taylor expansion:

f (x) = f (x0) + f ′(x0)(x − x0) + 1

2!f
′′(x0)(x − x0)2 + · · ·

+ 1

k!f
(k)(x0)(x − x0)k + o((x − x0)k)

as long as f (k+1)(x) is continuous around x0. The symbol o(ε) denotes any quantity
much smaller than ε as ε approaches zero, specifically,

lim
ε→0

o(ε)

ε
= 0.

For example, x2 is o(x), 10 000 000x2 is again o(x), x is o(
√
x), etc. Similarly,

the symbol O(x) denotes any quantity not greater in absolute value than a certain
multiple of x as x approaches 0. For example,

lim
x→0

cos x − 1

x2 = −1/2,

which means cos x − 1 = O(x2).
We can write the Taylor expansion equivalently as

�f (y) = f ′(y)�y + 1

2!f
′′(y)(�y)2 + · · · + 1

k!f
(k)(y)(�y)k + · · · ,

where
�f (y) := f (y + �y) − f (y)

and the correspondence between y and x variables is y = x0, �y = x − x0.

Example A.9. Find an approximate formula for � ln y.

Solution. Taking the first two elements of the expansion we have

� ln y ≈ 1

y
�y − 1

2

1

y2 (�y)2 = �y

y
− 1

2

(
�y

y

)2

.

Note that (�y)/y can be interpreted as the percentage change in y. For a small
change in y (under 5%) it is enough to use just the first term as an approximation:

� ln y ≈ �y

y
.

The exact value of � ln y and its approximation for −0.1 � (�y)/y � 0.1 are
shown in Table A.1. Note that

� ln y = ln(y + �y) − ln y = ln

(
1 + �y

y

)
.
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Example A.10. The price of a pure discount bond with time to maturity T and
interest rate r is

S = e−rT .

Find how the price reacts to a small change in interest rate if the initial interest rate
is 10% and time to maturity is five years.

Solution. The Taylor expansion to second order gives

�S ≈ S′(r)�r + 1
2S

′′(r)(�r)2

= −T e−rT �r + 1
2T

2e−rT (�r)2

= S(−T�r + 1
2 (T �r)2).

Substituting r0 = 0.1 and T = 5 we have

�S

S
≈ (−5�r + 12.5(�r)2).

A.4.1 Multivariate Taylor Expansion

In the case where we wish to change several underlying variables independently,
we have to use the multivariate Taylor expansion

g(x1, x2, . . . , xn)

= g(x0
1 , x

0
2 , . . . , x

0
n) +

n∑
k=1

(xk − x0
k )

∂g(x0
1 , x

0
2 , . . . , x

0
n)

∂xk

+ 1

2!
n∑

k=1

n∑
l=1

(xk − x0
k )(xl − x0

l )
∂2g(x0

1 , x
0
2 , . . . , x

0
n)

∂xk∂xl
+ · · · .

With the benefit of matrix notation this formula can be written in a more compact
form. Let us introduce the following natural notation:

x = [x1 x2 · · · xn
]∗

,

∂g

∂x
=
[
∂g

∂x1

∂g

∂x2
· · · ∂g

∂xn

]
,

∂2g

∂x∂x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2g

∂x1∂x1

∂2g

∂x1∂x2
. . .

∂2g

∂x1∂xn

∂2g

∂x2∂x1

∂2g

∂x2∂x2
. . .

∂2g

∂x2∂xn
...

...
. . .

...

∂2g

∂xn∂x1

∂2g

∂xn∂x2
. . .

∂2g

∂xn∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The vector ∂g/∂x is called the gradient. The matrix ∂2g/∂x∂x∗ is called the Hessian
matrix of the function g. Once can easily verify that the Taylor expansion above
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Table A.1. Taylor series approximation of � ln y.

Fist-order approximation Exact expression Second-order approximation
�y

y
� ln y = ln

(
1 + �y

y

)
�y

y
− 1

2

(
�y

y

)2

−0.100 −0.105 −0.105
−0.080 −0.083 −0.083
−0.060 −0.062 −0.062
−0.040 −0.041 −0.041
−0.020 −0.020 −0.020

0.000 0.000 0.000
0.020 0.020 0.020
0.040 0.039 0.039
0.060 0.058 0.058
0.080 0.077 0.077
0.100 0.095 0.095

can be written as

g(x) = g(x0) + ∂g(x0)

∂x
(x − x0) + 1

2 (x − x0)∗ ∂
2g(x0)

∂x∂x∗ (x − x0) + · · ·
(see also Exercise 1.13 in Chapter 1).

Example A.11. In Example A.10 above find the change in the bond price if both the
interest rate r and the time to maturity T change independently by small amounts.

Solution. From the Taylor expansion we have

�S ≈ ∂S(r, T )

∂r
�r + ∂S(r, T )

∂T
�T

+ 1

2

[
∂2S(r, T )

∂r2 (�r)2 + 2
∂2S(r, T )

∂r∂T
�r�T + ∂2S(r, T )

∂T 2 (�T )2
]

= −T e−rT �r − re−rT �T

+ 1
2 [T 2e−rT (�r)2 + 2(rT − 1)e−rT �r�T + r2e−rT (�T )2],

�S

S
≈ −T�r − r�T + 1

2 [T 2(�r)2 + 2(rT − 1)�r�T + r2(�T )2].
In matrix form,

�S ≈ [−5 −0.1
] [�r

�T

]
+ 1

2

[
�r �T

] [ 25 −0.5
−0.5 0.01

] [
�r

�T

]
.

A.5 Optimization

The Taylor expansion is instrumental in finding local optima of univariate and mul-
tivariate functions. Consider a univariate function f (x) and suppose the point x0 is
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its local optimum. From the Taylor expansion

f (x) = f (x0) + f ′(x0)(x − x0) + o(x − x0).

It follows that f ′(x0) must be equal to 0, otherwise we would be able to increase
(decrease) the value of f by moving a small distance to the right or left of x0. This
gives the so-called first-order condition:

f ′(x0) = 0.

This is a necessary, but not a sufficient, condition to find a local optimum. For
example, with f (x) = x3 we find f ′(0) = 0 but x = 0 is neither a local minimum
nor a local maximum because f (x) is strictly increasing on the whole real line. To
see whether one has found a minimum or a maximum it is necessary to look at the
second-order term in the Taylor expansion:

f (x) = f (x0) + f ′(x0)︸ ︷︷ ︸
0

(x − x0) + f ′′(x0)(x − x0)2 + o((x − x0)2).

If

f ′′(x0) < 0, (A.2)

then the second-order term is always negative and we have a local maximum, whereas
if

f ′′(x0) > 0, (A.3)

the second-order term is always positive and we have found a local minimum. In-
equalities (A.2) and (A.3) are called the second-order conditions.

A.5.1 Multivariate optimization

With multivariate functions the optimization works in exactly the same way. The
first-order condition requires the gradient ∂f/∂x to be zero (in all components), and
the second-order condition requires the quadratic form

(x − x0)∗ ∂2f

∂x∂x∗ (x − x0)

to be strictly positive for a local minimum, or strictly negative for a local maximum.
This is equivalent to requiring the Hessian matrix ∂2f/∂x∂x∗ to be positive definite
(negative definite) to guarantee that x0 is a local minimum (maximum).

A.5.2 Constrained optimization

Suppose we wish to maximize a multivariate function f (x) subject to a constraint
g(x) = 0. Assume that x0 is a local optimum. From the Taylor expansion we have

f (x) = f (x0) + ∂f (x0)

∂x
(x − x0) + o(x − x0),

g(x) = g(x0) + ∂g(x0)

∂x
(x − x0) + o(x − x0).
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The difference from the unconstrained optimization is that

∂f (x0)

∂x
(x − x0)

does not have to be zero for all values of x but only for those values that satisfy the
constraint g(x) = 0 to the first order, which implies

∂g(x0)

∂x
(x − x0) = 0.

Thus for all x such that

∂g(x0)

∂x
(x − x0) = 0

we must have

∂f (x0)

∂x
(x − x0) = 0.

This will only be the case if the vector ∂f (x0)/∂x is parallel to the vector ∂g(x0)/∂x,
therefore there must be λ ∈ R such that

∂f (x0)

∂x
= λ

∂g(x0)

∂x
. (A.4)

The coefficient λ is known as the Lagrange multiplier and (A.4) is the first-order
condition of the constrained optimization.

A.6 Integration

There are two versions of the integral: definite and indefinite. The definite integral
is the area under the curve f (x) between points a and b,∫ b

a

f (x) dx,

and it should be thought of as the limit of a sum: we approximate the area by a
sum of rectangles; a representative rectangle has width �x. Increase number of
rectangles and let all the widths �x → 0; the sum of the areas of the rectangles
will tend to the area under the curve. We define

∫ b

a
f (x) dx as the limit of the sum

of the areas of the rectangles (see Figure A.3).
Indefinite integration is the opposite process to differentiation, that is, F(x) is the

indefinite integral of f (x) if

F ′(x) = f (x),

and we write F(x) = ∫ f (x) dx. The function F(x) is called the primitive function
f (x).

Note. Unlike in the case of differentiation, for integration we do not have a set of
rules that always lead to a result.
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Figure A.3. Approximation of
∫ 10

0 (sin x/x) dx.

A.6.1 Elementary Integrals ∫
eax dx = eax

a
+ c,∫

xα dx = xα+1

α + 1
+ c,∫

dx

x
= ln x + c.

A.6.2 Useful Integration Rules

1.
∫

(af (x) + bg(x)) dx = a

∫
f (x) dx + b

∫
g(x) dx;

2.
∫

f (g(x))g′(x) dx = F(g(x)) (substitution method);

3.
∫

f (x)g′(x) dx = f (x)g(x) +
∫

f ′(x)g(x) dx (integration by parts).

Example A.12. Calculate ∫
(1 + x + ex) dx.

Solution. Applying rule 1 and the knowledge of elementary integrals we have∫
(1 + x + ex) dx =

∫
dx +

∫
x dx +

∫
ex dx

= x + 1
2x

2 + ex + c.

Example A.13. Calculate ∫
e−x2/2x dx.
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Solution. Here we can apply the substitution method, taking

f (y) = e−y,

g(x) = 1
2x

2.

Note that g′(x) = x so that ∫
e−x2/2x dx

is indeed equal to ∫
f (g(x))g′(x) dx.

The primitive function to f (y) is

F(y) = −e−y

as one can quickly verify by differentiating:

F ′(y) = e−y = f (y).

Thus from rule 2 we obtain∫
e−x2/2x dx = −e−x2/2 + c.

Example A.14. Calculate ∫
ln x.

Solution. This is an example of integration by parts—rule 3. Take

f (x) = ln x,

g′(x) = 1,

implying g(x) = x. Then we have∫
ln x = x ln x −

∫
1

x
x dx = x ln x − x + c.

A.6.3 Evaluation of Definite Integrals

Although the definite integral is defined as a limit of the sum, it is rarely calculated
in that way. To evaluate ∫ b

a

f (x) dx

we find the primitive function F(x) (the indefinite integral) and then∫ b

a

f (x) dx = [F(x)]ba = F(b) − F(a) (A.5)

provided F(x) is continuous between a and b.
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Example A.15. Evaluate ∫ 2

0
e−at dt.

Solution. First of all, let us find the indefinite integral∫
e−at dt = −1

a
e−at .

Now use formula (A.5)∫ 2

0
e−at dt =

[
−1

a
e−at

]2

0
= 1 − e−2a

a
.

A.6.4 Definite Integral as a Function of Its Limit

Very often we see functions defined as follows:

G(t) =
∫ t

0
g(x) dx.

For such functions we have

G′(t) = g(t),

which means that G(t) is a primitive function to g(t). More generally, for

G(t) =
∫ b(t)

a(t)

g(x, t) dx

we have

G′(t) = b′(t)g(b(t), t) − a′(t)g(a(t), t) +
∫ b(t)

a(t)

∂g(x, t)

∂t
dx. (A.6)

Example A.16. Find Φ ′(x), where Φ is the cumulative distribution function of the
standard normal distribution:

Φ(x) =
∫ x

−∞
e−t2/2

√
2π

dt.

Solution.

Φ ′(x) = e−x2/2

√
2π

.

Example A.17. The following problem arises in the calibration of term-structure
models. Calculate

∂A(t, T )

∂t
,
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where

A(t, T ) = (T − t)3σ 2

6
−
∫ T

t

θ(t, s) ds,

θ(t, s) =
∫ s

t

µ(u) du. (A.7)

Solution. By formula (A.6) we have

∂A(t, T )

∂t
= (T − t)2σ 2

2
+ θ(t, t) −

∫ T

t

∂θ(t, s)

∂t
ds.

From the definition (A.7) it follows that

θ(t, t) = 0,

∂θ(t, s)

∂t
= −µ(t).

Consequently,

∂A(t, T )

∂t
= − (T − t)2σ 2

2
+
∫ T

t

µ(t) ds

= − (T − t)2σ 2

2
+ µ(t)(T − t).

A.6.5 Double Integrals

Imagine a situation where the short-term interest rate is given as an integral:

r(t) =
∫ t

0
g(x) dx.

Now we want to calculate the compounded interest rate from time 0 to time T :

f (0, T ) =
∫ T

0
r(t) dt.

Substituting for rt we arrive at a double integral:

f (0, T ) =
∫ T

0

(∫ t

0
g(x) dx

)
dt.

The way the integral is written suggests how it should be evaluated: first calculate
the inner integral

∫ t

0 g(x) dx and then the outer
∫ T

0 r(t) dt . However, the same
integral can be written in a completely symmetric way as∫ T

0

(∫ t

0
g(x) dx

)
dt =

∫
0�t�T
0�x�t

g(x) dx dt.

The latter integral does not suggest the method of evaluation, it only mentions the
function to be integrated, in our case g(x), and the range over which we integrate,
in our case the triangle 0 � t � T , 0 � x � t (see Figure A.4).
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T

t

0 T

A

x

Figure A.4. Area of integration, 0 � t � T , 0 � x � t .

g(x,t)

dx
dt

Figure A.5. Two-variable function and its approximation.

An example of the function g(x), considered as a function of two variables x and
t , is plotted in Figure A.5.

Integral in Two Dimensions
In general an integral of a two-variable function over a two-dimensional region will
be written as ∫

A
g(x, t) dx dt

where A is the area over which we are integrating.
As in the one-dimensional case, the integral can be approximated as a sum of

volumes of rectangular objects, but here we have boxes instead of rectangles (see
Figure A.5). Figure A.6 shows the approximation of∫

A
g(x, t) dx dt

when A is a triangle 0 � t � 3, 0 � x � t , and g(x, t) = e−x2/4.
It does not matter in which order we add the volume of the boxes in Figure A.6.

If we add them first along the x-axis, we will get∫ 3

0

(∫ t

0
g(x, t) dx

)
dt.
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Figure A.6.

However, we can add them first along the t-axis, and we shall see how it is done in
the next paragraph.

Changing the Order of Integration
The integration region in Figure A.4 can be equivalently expressed as

x � t � T ,

0 � x � T .

This allows us to integrate along the t-axis first:∫
0�x�T
x�t�T

g(x) dx dt =
∫ T

0

(∫ T

x

g(x) dt

)
dx.

Note that ∫ T

x

g(x) dt = g(x)

∫ T

x

dt = g(x)(T − x)

and therefore the compounded interest can be expressed as a single integral:

f (0, T ) =
∫ T

0
g(x)(T − x) dx.

The ‘real’ application of changing the order of integration is in Section 11.5.3.

A.7 Exercises

ExerciseA.1 (simple differentiation). Differentiate the following with respect to x.

(a) (3x2 − 5x + 2)4.
(b) (ln x + ex)4.
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(c) ex
2+x .

(d) x2(2x + 1)3.
(e) ex ln x.

(f)
ex

(1 + x)2 .

Exercise A.2 (partial differentiation and the chain rule). Set

f (x, y, z) = x(y2 + ln z).

(a) Find the partial derivatives of f with respect to x, y, and z.
(b) Define g(x) = f (x, ln x, x2). Find g′(x).
(c) Assume, more generally, that h(x) = f (x, y(x), z(x)). Find

d

dx
f (x, y(x), z(x)) := h′(x)

using the chain rule.
(d) Take y(x) = ln x and z(x) = x2 and substitute this into your result in part (c).
(e) Compare the results in parts (b) and (d).

Exercise A.3 (Taylor expansion). Suppose that production Y is given by the Cobb–
Douglas production function,

Y (K,L) = KαLβ,

where K is the level of capital and L is labour input. Write down the Taylor
expansion of Y to first order and decide what is the percentage increase in output,
given that both capital and labour increase by 1%. Assume α = 1

4 , β = 3
4 .

Exercise A.4 (differentiating integrals with respect to their limits). Perform the
following differentiations.

(a)
d

dx

∫ x

−∞
e−t2/2 dt .

(b)
d

dx

∫ ∞

x

e−t2/2 dt .

(c)
d

dx

∫ √
2 ln x

0
e−t2/2 dt for x > 1.

(d)
d

dx

∫ x

0

(∫ t

0
f (y, s) ds

)
dy.

Exercise A.5 (definite integrals). Evaluate the following integrals.

(a)
∫ t

0
e−1.7s ds.

(b)
∫ t

0

√
s ds.
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(c)
∫ s

0
t1/2 dt .

(d)
∫ ∞

0
te−t2

dt .

(e)
∫ 1

0
s−1 ds.

Exercise A.6 (verifying the solution of a partial differential equation). The log
contract is a derivative security that pays at maturity the logarithm of the underlying
stock price. The Black–Scholes price of the log contract is

L(S, r, σ, τ ) = e−rτ [ln S + (r − 1
2σ

2)τ ],
where S is the underlying stock price, r is the (constant) short-term interest rate, σ
is the (constant) stock volatility, and τ is the time to maturity.

(a) Verify that L satisfies the boundary condition,

L(S, r, σ, 0) = ln S.

(b) Verify that L solves the Black–Scholes PDE,

−∂L(S, r, σ, τ )

∂τ
+rS

∂L(S, r, σ, τ )

∂S
+ 1

2 (σS)2 ∂
2L(S, r, σ, τ )

∂S2 −rL(S, r, σ, τ ) = 0.

Exercise A.7 (call option delta). The Black–Scholes formula for the price of a call
option is

C(S,K, r, σ, τ ) = SΦ(d1) − Ke−rτΦ(d2), (A.8)

where

d1,2 = ln(S/K) + (r ± 1
2σ

2)τ

σ
√
τ

.

Here S is the current price of the underlying stock, K is a fixed strike price, r is the
(constant) short interest rate, σ is the (constant) volatility of the stock, and τ is the
time to maturity;

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt

is the cumulative standard normal distribution function, and we know that

Φ ′(x) = 1√
2π

e−x2/2 =: φ(x).

The delta of the option is given as

� = ∂C(S,K, r, σ, τ )

∂S
,

if we take C as a function of S,K, r, σ and τ . It tells us how many shares we should
hold in a portfolio which perfectly replicates the option.
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(a) Suppose that we take C as a function of S, d1 and d2 as suggested by equa-
tion (A.8):

C(S, d1, d2) = SΦ(d1) − Ke−rτΦ(d2).

Taking into account that d1 and d2 are functions of S, that is, d1(S), d2(S),
express � using C(S, d1, d2), d1(S) and d2(S) and the chain rule of Sec-
tion A.3.3.
Calculate the following.

(b)
∂C(S, d1, d2)

∂S
.

(c)
∂C(S, d1, d2)

∂d1
.

(d)
∂C(S, d1, d2)

∂d2
.

(e) d ′
1(S).

(f) d ′
2(S).

(g) Substitute results (b)–(f) into the chain rule (a) and show that

dC(S, d1(S), d2(S))

dS
= Φ(d1) + φ(d1)

σ
√
τ

− Ke−rτ φ(d2)

Sσ
√
τ

= Φ(d1) + φ(d1)

σ
√
τ

[
1 − K

S
e−rτ φ(d2)

φ(d1)

]
= Φ(d1).

Exercise A.8 (call option gamma). The gamma of the call option is defined as

γ = ∂2C(S,K, r, σ, τ )

∂S2 .

Express γ in terms of the option’s � and evaluate it using the explicit value of �
obtained in Exercise A.7.



Appendix B
Probability

This appendix serves as a refresher course in probability theory. It explains essential
concepts such as joint and marginal distribution, cumulative distribution and its
density, stochastic independence, conditional probability and expectation, using
discrete random variables. We argue that these properties extend to continuous
random variables by passing to a limit. We then explain how one describes random
variables using the mean, variance and higher moments, the moment-generating
function and quantiles. We review the properties of the variance–covariance matrix
and of jointly normally distributed variables. If the material included here does not
fully satisfy the reader’s needs, a more detailed introduction to probability theory
can be found in Mood et al. (1974) (see also the notes in Section B.13).

B.1 Probability Space

A probability space is the triplet (Ω,F , P ). It contains information about elemen-
tary outcomes in the sample space Ω , all events are collected in the σ -algebra F ,
and the probability of all events is described by the probability measure P . Each
probabilistic model has these three components, even though one does not often
mention them explicitly. One example of a probability space in a financial context
was given in Section 8.5. Here we give another simple example.

Example B.1. The joint distribution of returns on two car industry stocks, Ford and
Honda, is given in Table B.1. Determine the number of elementary outcomes and
find the probability of the event 1

2 (RHonda + RFord) < 1.0.

Solution. Each return takes three values and is allowed to move independently of
the other return, which means we have nine elementary outcomes. In Table B.2
the probabilities of the elementary outcomes that belong to the event 1

2 (RHonda +
RFord) < 1.0 are printed in bold. Consequently,

P( 1
2 (RHonda + RFord) < 1.0) = 0.4.

B.2 Conditional Probability

Let A and B be two events in F of the given probability space (Ω,F , P ). The
conditional probability of event A given that event B occurs, denoted P(A | B), is
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Table B.1. Joint distribution of RHonda and RFord.
RHonda

0.9 1.0 1.1
0.8 0.1 0.1 0.1

RFord 1.0 0.1 0.1 0.1
1.2 0.1 0.2 0.1

Table B.2. Probability of event 1
2 (RHonda + RFord) < 1.0.

RHonda
0.9 1.0 1.1

0.8 0.1 0.1 0.1
RFord 1.0 0.1 0.1 0.1

1.2 0.1 0.2 0.1

Table B.3. Probability of two events.
RHonda RHonda

0.9 1.0 1.1 0.9 1.0 1.1
0.8 0.1 0.1 0.1 0.8 0.1 0.1 0.1

RFord 1.0 0.1 0.1 0.1 1.0 0.1 0.1 0.1
1.2 0.1 0.2 0.1 1.2 0.1 0.2 0.1

P(RFord � 1.0 and RHonda � 1.0) P (RHonda � 1.0)

given by

P(A | B) = P(A ∩ B)

P (B)
if P(B) > 0 (B.1)

and is left undefined when P(B) = 0. The symbol A∩B means ‘the event A occurs
and the event B occurs’.

Note.

For B fixed P(. | B) is a probability measure on F .

Example B.2. In the set-up of Example B.1, what is the probability that the return
on Ford is medium or high (RFord � 1.0) given that the return on Honda is medium
or high (RHonda � 1.0)?

Solution. We need to calculate

P(RFord � 1.0 | RHonda � 1.0) = P(RFord � 1.0 and RHonda � 1.0)

P (RHonda � 1.0)
.

Now referring to Table B.3

P(RFord � 1.0 and RHonda � 1.0) = 0.5,

P (RHonda � 1.0) = 0.7,

and consequently P(RFord � 1 | RHonda � 1) = 0.5/0.7 = 0.714.
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Theorem B.3 (total probabilities). If B1, B2, . . . , Bn is a collection of mutually
disjoint events in F satisfying

Ω =
n⋃

j=1

Bj and P(Bj ) > 0,

then for every A ∈ F

P(A) =
n∑

j=1

P(A | Bj )P (Bj ).

Example B.4. The probability of the pound appreciating significantly within one
month is 0.7 if the interest rate goes up during that period, 0.5 if the interest rate
remains unchanged and 0.3 if the interest rate goes down. An independent expert
believes that in the month to come the Bank of England will either announce a
lower interest rate with probability 0.6 or will leave interest rates unchanged with
probability 0.4. What is the probability that the pound appreciates significantly
within a month?

Solution. Denote the appreciation by A and let IU, IC, ID denote the movements
of the interest rate (up, constant, down). Then

P(A) = P(A | IU)P (IU) + P(A | IC)P (IC) + P(A | ID)P (ID)

= 0.7 × 0 + 0.5 × 0.4 + 0.3 × 0.6 = 0.38.

Theorem B.5 (multiplication rule). Let A1, . . . , An be events for which P(A1 ∩
A2 ∩ · · ·An) > 0. Then

P(A1 ∩ A2 ∩ · · ·An)

= P(An | A1 ∩ A2 ∩ · · ·An−1)P (An−1 | A1 ∩ A2 ∩ · · ·An−2)

· · ·P(A2 | A1)P (A1).

Example B.6. Researchers were looking at the frequency of market crashes. They
found that the probability of a market crash in a given year depends on the number
of years during which the market was previously stable. In particular, they deduced
that if the market runs for two years without a crash the probability of it surviving
another year is 0.8, whereas if the last crash was a year ago the probability of the
market surviving another year is 0.9. Immediately after a crash the market survives
one year without a crash with probability 0.95. Suppose that this year there was
a market crash. What is the probability that the market runs smoothly in the three
years to come?

Solution. Let us denote Cn as a crash in year n and Nn as no crash in year n. We
are after

P(N3 ∩ N2 ∩ N1 ∩ C0).
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Using the multiplication rule we obtain

P(N3 ∩ N2 ∩ N1 ∩ C0)

= P(N3 | N2 ∩ N1 ∩ C0) × P(N2 | N1 ∩ C0) × P(N1 | C0) × P(C0)

= 0.8 × 0.9 × 0.95 × 1 = 0.684.

B.3 Marginal and Joint Distribution

Definition B.7 (probability density). Let us have two discrete random variables
X and Y, taking values xi, i = 1, . . . , m, and yj , j = 1, . . . , n, respectively. The
function fX,Y

fX,Y (x, y) = P(X = x, Y = y)

is called the joint probability density of the random variables X and Y. The function
fX

fX(x) =
n∑

j=1

P(X = x, Y = yj )

is called the marginal density of X and similarly fY

fY (y) =
m∑
i=1

P(X = xi, Y = y)

is the marginal density of Y.

Definition B.8 (cumulative distribution). Take X and Y as above. The function
FX,Y

FX,Y (x, y) = P(X � x, Y � y)

is called the joint cumulative distribution of X and Y . The function FX

FX(x) =
n∑

j=1

P(X � x, Y = yj )

is called the marginal cumulative distribution of X and similarly

FY (y) =
m∑
i=1

P(X = xi, Y � y)

is the marginal cumulative distribution of Y .

Example B.9. Find the marginal density of RHonda and RFord in Table B.1.

Solution. To calculate the marginal distribution of RHonda, simply look at Table B.1
and add the probabilities in each column. To obtain the marginal distribution of
RFord, add the probabilities in each row. The result is shown in Table B.4.
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Table B.4. Joint and marginal distribution of RHonda and RFord.

RHonda
RFord

marginal
0.9 1.0 1.1 ↓

0.8 0.1 0.1 0.1 0.3
RFord 1.0 0.1 0.1 0.1 0.3

1.2 0.1 0.2 0.1 0.4
RHonda

marginal
−→ 0.3 0.4 0.3

Table B.5. Two joint distributions with identical marginals.
RHonda RHonda

0.9 1.0 1.1 0.9 1.0 1.1
0.8 0.1 0.1 0.1 0.8 0.09 0.12 0.09

RFord 1.0 0.1 0.1 0.1 1.0 0.09 0.12 0.09
1.2 0.1 0.2 0.1 1.2 0.12 0.16 0.12

Table B.6. Joint density and joint cumulative distribution.
RHonda RHonda

0.9 1.0 1.1 0.9 1.0 1.1
0.8 0.1 0.1 0.1 0.8 0.1 0.2 0.3

RFord 1.0 0.1 0.1 0.1 1.0 0.2 0.4 0.6
1.2 0.1 0.2 0.1 1.2 0.3 0.7 1.0

joint density joint cumulative distribution

It is clear that a given joint distribution determines the marginal distributions
uniquely. However, the converse is not true; a given marginal distribution can
come from many different joint distributions (see Table B.5). The function that
links the marginal densities and the joint density is called the copula. In practice,
one picks the marginal distributions first and then selects an appropriate copula
to achieve the right amount of interdependency among the individual random
variables (see the notes at the end of the chapter).

Example B.10. Find the joint cumulative distribution of RHonda and RFord from the
density given in Table B.1.

Solution. Proceed from the definition F(x, y) = P(RFord � x,RHonda � y).

The resulting F must increase in the left-to-right and top-to-bottom directions (see
Table B.6).

B.4 Stochastic Independence

B.4.1 Independence of Events

When P(A | B) does not depend on the event B, that is,

P(A | B) = P(A),
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then it is natural to say that the events A and B are stochastically independent
(or simply independent if there can be no confusion with linear independence).
Equivalently, after writing P(A | B) as P(A ∩ B)/P (B), we can see that A and B

are independent if
P(A ∩ B) = P(A)P (B).

Example B.11. On a given day the market can be bullish or bearish and stable or
volatile. The probability of the four outcomes is summarized as follows:

STABLE VOLATILE

BULLISH 1
3

1
6

BEARISH 1
4

1
4

Are the events BULLISH and VOLATILE independent?

Solution. We have

P(VOLATILE) = 1
6 + 1

4 = 5
12 ,

P (BULLISH) = 1
3 + 1

6 = 1
2 ,

P (VOLATILE ∩ BULLISH) = 1
6 ,

1
6 = P(VOLATILE ∩ BULLISH) �= P(VOLATILE)P (BULLISH) = 5

24 ,

and hence the two events are not independent.

B.4.2 Independence of Random Variables

Definition B.12. Two random variables X and Y are stochastically independent if
and only if for any x, y ∈ R the two events X � x and Y � y are independent, that
is, if and only if

FX,Y (x, y) = FX(x)FY (y) for all x, y.

Proposition B.13. When the joint density fX,Y exists, X and Y are stochastically
independent if and only if

fX,Y (x, y) = fX(x)fY (y).

Proof. For discrete random variables see Exercise B.25. For continuous random
variables see Section B.9.4.

The meaning of stochastic independence is best appreciated from the following
proposition.

Proposition B.14. If X1 and X2 are independent, then for any functions g1, g2
(such that gi(Xi) are random variables) g1(X1) and g2(X2) are again independent.

Proof. Essentially, events of the type gi(Xi) � vi are composed of events of the
type Xi � vi . Since the latter are independent, the former are again independent.
A formal proof can be found in Mood et al. (1974).
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B.5 Expectation Operator

Let X be a discrete random variable taking values x1, x2, . . . xm with density fX

and let g be an arbitrary function. The expected value of a random variable g(X) is
defined as follows:

E[g(X)] =
m∑

j=1

g(xj )fX(xj ), (B.2)

whereas, for a continuous random variable X,

E[g(X)] =
∫ ∞

−∞
g(x)fX(x) dx. (B.3)

• The discrete expectation is calculated as follows. For each value of X eval-
uate g(X) and multiply it by the probability of the corresponding scenario,
then add the contributions of all the scenarios.

• Expression (B.3) can be thought of as a limit of the discrete expectation
(B.2); more on this topic in Section B.9.2.

• Definitions (B.2) and (B.3) will also work with several random variables
simultaneously; it is enough to think of X as a vector of random variables.

Example B.15. For the distribution of returns in Table B.1 calculate E[RFord] and
E[R2

Ford].
Solution. This task is best accomplished using the marginal distribution of RFord
given in Table B.4. For each expectation we have to consider the value of RFord
and R2

Ford, respectively, multiply it by the probability of the corresponding state
(scenario) and add these values. Specifically,

E[RFord] = 0.8 × 0.3 + 1.0 × 0.3 + 1.2 × 0.4 = 1.02,

E[R2
Ford] = 0.82 × 0.3 + 1.02 × 0.3 + 1.22 × 0.4 = 1.068.

Example B.16. Calculate E[RFordRHonda] using the joint distribution in Table B.1.

Solution. Again we have to loop over all scenarios (elementary outcomes) com-
puting the value RHondaRFord, multiplying it by the corresponding probability and
adding all the contributions. In our particular case,

E[RFordRHonda] = 0.8 × 0.9 × 0.1 + 0.8 × 1.0 × 0.1 + 0.8 × 1.1 × 0.1

+ 1.0 × 0.9 × 0.1 + 1.0 × 1.0 × 0.1 + 1.0 × 1.1 × 0.1

+ 1.2 × 0.9 × 0.1 + 1.2 × 1.0 × 0.2 + 1.2 × 1.1 × 0.1

= 1.02.
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This can be easily written down in matrix form

E[RFordRHonda] = [0.8 1.0 1.2
]⎡⎣0.1 0.1 0.1

0.1 0.1 0.1
0.1 0.2 0.1

⎤
⎦
⎡
⎣0.9

1.0
1.1

⎤
⎦

and computed effortlessly in MATLAB.

B.6 Properties of Expectation

Computing expectations can be time-consuming, especially when dealing with sev-
eral random variables simultaneously. Knowing the general properties of expec-
tation can help to avoid unnecessary calculations. In turn these properties follow
from the properties of summation (or integration as a limit of summation). Let
X1, . . . , Xn be a collection of random variables and let a be a constant. Then we
have the following.

1. Expectation of a constant is that constant:

E[a] = a.

2. Expectation scales linearly:

E[aX] = aE[X].
3. Expectation of a sum equals the sum of expectations:

E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn].
4. If X1, . . . , Xn are stochastically independent, then

E[X1 × X2 × · · · × Xn] = E[X1] × E[X2] × · · · × E[Xn].

Proof. Take X and Y as in the proof of part 2. Independence implies

fX,Y (xi, yj ) = fX(xi)fY (yj ),

hence

E[X × Y ] =
m∑
i=1

n∑
j=1

xiyjfX,Y (xi, yj )

=
m∑
i=1

n∑
j=1

xiyjfX(xi)fY (yj )

=
m∑
i=1

xifX(xi)

n∑
j=1

yjfY (yj )

= E[X] × E[Y ].
With more than two variables one proceeds in the same way.
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B.7 Mean and Variance

The number E[X], sometimes denotedµX, is called the mean of the random variable
X. The expected squared deviation of the random variable from its mean is called
the variance, denoted Var(X) or σ 2

X:

Var(X) := E[(X − E[X])2].

Example B.17. Use the properties of expectation to simplify the expression for
variance.

Solution. Firstly, we will expand the expression (X − E[X])2:

(X − E[X])2 = X2 − 2XE[X] + (E[X])2.

Now bearing in mind that E[X] is a constant and applying rules 1, 2 and 3 we have

E[(X − E[X])2] = E[X2 − 2XE[X] + (E[X])2]
= E[X2] − 2E[X]E[X] + (E[X])2

= E[X2] − (E[X])2.

Var(X) = E[(X − µX)2] = E[X2] − µ2
X.

B.7.1 Properties of Variance

1. Variance is independent of the mean in the following sense. If a is a constant,
then

Var(X + a) = Var(X).

This is because

X + a − E[X + a] = X − E[X].
2. Variance increases quadratically with the change in scale:

Var(aX) = a2 Var(X).

This happens because

(aX − E[aX])2 = a2(X − E[X])2.

Example B.18. Calculate the mean and variance of Y if Y = a + bX.

Solution. Using the properties of mean and variance we have

µY = E[Y ] = E[a + bX] = a + bE[X] = a + bµX,

σ 2
Y = Var(Y ) = Var(a + bX) = Var(bX) = b2 Var(X) = b2σ 2

X.
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B.7.2 Standard Deviation

Standard deviation, denoted Std(X) or σX, is defined as the positive square root of
the variance:

Std(X) = √Var(X).

Note that the standard deviation increases linearly with the change in scale:

Std(aX) = |a| Std(X).

B.8 Covariance and Correlation

Covariance is a simple measure of co-movement between two random variables.
Formally, it is defined as follows:

Cov(X, Y ) := E[(X − µX)(Y − µY )].
If the covariance is positive (negative), we expect Xi to be above its mean when
Xj is above (below) its mean. In such a case we say that Xi and Xj are positively
(negatively) correlated.

Example B.19. Use the properties of expectation to simplify the expression for
covariance.

Solution. We begin by expanding the expression (X − µX)(Y − µY ):

(X − µX)(Y − µY ) = XY − XµY − µXY + µXµY .

Consequently,

E[(X − µX)(Y − µY )] = E[XY − XµY − µXY + µXµY ]
= E[XY ] − µXµY − µXµY + µXµY

= E[XY ] − µXµY .

Cov(X, Y ) = E[(X − µX)(Y − µY )] = E[XY ] − µXµY ,

Cov(X,X) = Var(X).

The following two properties are easy to prove from first principles.

1. Shifting the mean does not change the covariance:

Cov(a + X, b + Y ) = Cov(X, Y ),

2. Covariance scales linearly in both components:

Cov(aX, bY ) = ab Cov(X, Y ).

To find out whether the covariance between two variables is high or low we need
a yardstick to compare it against. It turns out the appropriate yardstick is the product
of standard deviations Std(X) Std(Y ). The scaled value of the covariance is called
the correlation, and is denoted corr(X, Y ) or ρX,Y :

corr(X, Y ) := Cov(X, Y )√
Var(X)Var(Y )

= σXY

σXσY

.



358 Appendix B. Probability

It can be shown (see Mood et al. 1974) that

−1 � corr(X, Y ) � 1

and the equality occurs only if there is a constant a such that X−µX = a(Y −µY ).

In such a case we say that X and Y are perfectly correlated. Conversely, when
corr(X, Y ) = 0 we say that X and Y are uncorrelated.

B.8.1 Correlation and Independence

• Independent variables are automatically uncorrelated.

Proof. For independent variables we have E[XY ] = E[X]E[Y ]. Hence
Cov(X, Y ) = E[XY ] − E[X]E[Y ] = 0.

• Uncorrelated variables are not necessarily independent. For example,
RHonda and RFord in Table B.1 are uncorrelated but they are not inde-
pendent.

• If X and Y are jointly normally distributed and uncorrelated, then they are
also independent.

B.8.2 Variance–Covariance Matrix

Let

X = [X1 X2 · · · Xn

]∗
be a vector of random variables with mean

µX = [E[X1] E[X2] · · · E[Xn]
]∗

.

We define the variance–covariance matrix ΣX as follows:

(ΣX)ij = Cov(Xi,Xj ),

meaning that ΣX is a symmetric matrix with variances on the diagonal and covari-
ances off the diagonal.

In matrix notation Σ can be obtained as

ΣX = E[(X − µX)(X − µX)∗].
B.8.3 Portfolio Theorem for Covariances

Apart from storing variances and covariances, the matrixΣX is useful for calculating
the variance of Y = α1X1 + · · · + αnXn. Typically, X1, . . . , Xn are returns of
different securities and Y is a portfolio return. It is helpful to define

α∗ = [α1 α2 · · · αn

]
and then Y = α∗X. We also have

µY = α∗µX.
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Now we can calculate the portfolio variance

Var(Y ) = E[(Y − µY )
2] = E[(Y − µY )(Y − µY )

∗]
= E[(α∗X − α∗µX)(α∗X − α∗µX)∗]
= E[α∗(X − µX)(X − µX)∗α]
= α∗E[(X − µX)(X − µX)∗]α
= α∗ΣXα.

1. Portfolio theorem. Let Y be an m-dimensional random variable repre-
senting m portfolios generated by portfolio weights A ∈ R

m×n from n

basis assets X:
Y = AX. (B.4)

Then the covariance among the new portfolios is given as follows:

ΣY = AΣXA∗. (B.5)

2. As a special case of (B.4) and (B.5) for uncorrelated variables X (ΣX = In)
and A = [1 1 · · · 1

]
we obtain

Var(X1 + X2 + · · · + Xn) = Var(X1) + Var(X2) + · · · + Var(Xn);
the variance of a sum equals the sum of the variances if the summands are
uncorrelated.

Example B.20. In econometrics, the ordinary least squares estimator β̂ is given by
the formula,

β̂ = (X∗X)−1X∗Y,
where the n × k matrix X is assumed to be fixed and the n-dimensional vector Y

has covariance matrix:
ΣY = σ 2In.

Find the variance–covariance matrix of the k-dimensional random variable β̂.

Solution. We have

β̂ = AY,

Σ
β̂

= AΣYA
∗,

where
A = (X∗X)−1X∗.

Substituting for A and ΣY we obtain

Σ
β̂

= (X∗X)−1X∗σ 2InX(X∗X)−1

= σ 2(X∗X)−1(X∗X)(X∗X)−1

= σ 2(X∗X)−1.
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B.9 Continuous Random Variables

Recall that for a given random variable X we define the cumulative distribution FX

function as follows:
FX(x) = P(X � x).

The cumulative distribution has the following properties:
1. F(x) is non-decreasing;
2. F(−∞) = limx→−∞ F(x) = 0;
3. F(∞) = limx→∞ F(x) = 1.

Example B.21. Let X be a random excess return between −20% and 30%. Sup-
pose that X is distributed uniformly in [−0.2, 0.3]. Intuitively, this means that the
probability of X lying in an arbitrary interval [a, b],−0.2 � a � b � 0.3, is simply
proportional to the length of that interval:

P(X ∈ [a, b]) = const. × (b − a) for − 0.2 � a � b � 0.3. (B.6)

By assumption,
P(X ∈ [−0.2, 0.3]) = 1,

and therefore the constant in (B.6) must be 2:

P(X ∈ [a, b]) = 2 × (b − a) for − 0.2 � a � b � 0.3. (B.7)

Plot the cumulative distribution FX(x).

Solution. We have FX(x) = P(X � x). For x � −0.2 this probability is 0, for
x � 0.3 it is 1, and for −0.2 � x � 0.3 it is given by formula (B.7) with a = −0.2
and b = x:

FX(x) =

⎧⎪⎨
⎪⎩

0 for x � −0.2,

2(x + 0.2) for − 0.2 � x � 0.3,

1 for 0.3 � x.

This function is plotted in Figure B.1.

B.9.1 Discretization of Continuous Random Variables

The random variable in Example B.21 has one peculiar property: for any x ∈ R,
P(X = x) = 0! Thus, seemingly, continuous random variables are quite different
from discrete variables. It is, however, a simple matter to approximate a continuous
random variable by a discrete random variable.

Example B.22. Divide the interval [−0.2, 0.3] into 10 equal segments. Define a
new random variable Y taking 10 values −0.175,−0.125, . . . , 0.275 representing
the midpoint of each segment. Assign to each value of Y the probability fY (y) equal
to the probability that X falls into the given segment. Since the original distribution
is uniform and the segments have equal length, the probabilities are equal to 1/10.
Plot the cumulative distribution of Y and compare it with the cumulative distribution
of X.
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Figure B.1. Cumulative distribution function of a uniform random variable on [−0.2, 0.3].
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Figure B.2. Discrete approximation of a uniform distribution on [−0.2, 0.3].

Solution. Since Y is a discrete random variable its CDF will be constant most
of the time, jumping by 1/10 at the points −0.175,−0.125, . . . , 0.275. It has a
characteristic zigzag shape shown in Figure B.2. The straight line represents the
CDF of the continuous random variable X in Example B.21.

B.9.2 Univariate Probability Density

The above discretization can be easily generalized to any continuous random variable
taking values on the entire real line. Let us construct segments of length �x with
endpoints xi = i×�x for i = 0,±1,±2, . . . . Consider a discrete random variable
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Y taking values xi with probability:

fY (xi) = P(xi < X � xi + �x).

What is the probability that X is between x and x + �x? From the additivity of
probabilities:

P(X � x) + P(x < X � x + �x) = P(X � x + �x),

which can be rephrased as

P(x < X � x + �x) = FX(x + �x) − FX(x). (B.8)

Using the Taylor expansion to first order we have

FX(x + �x) − FX(x) ≈ F ′
X(x)�x. (B.9)

The function
fX(x) := F ′

X(x)

is called the probability density function of the continuous random variable X.
By virtue of (B.8) and (B.9) the density fX measures the probability of X falling
into a small interval around x per unit of length:

P(x < X � x + �x) ≈ fX(x)�x.

The expectation of the discretized variable Y is

∞∑
i=−∞

xifY (xi) =
∞∑

i=−∞
xi

FX(xi + �x) − FX(xi)

�x
�x. (B.10)

As �x → 0 the expression (FX(xi + �x) − FX(xi))/�x becomes F ′
X(xi) and the

right-hand side turns into an integral:

lim
�x→0

∞∑
i=−∞

xifY (xi) =
∫ ∞

−∞
xF ′

X(x) dx =
∫ ∞

−∞
xfX(x) dx.

For a continuous random variable X with density fX = F ′
X, the expectation is

defined as the limit of (B.10):

E[X] =
∫ ∞

−∞
xfX(x) dx.

Example B.23. Suppose that the CDF of the random variable X is

F(x) = ex

1 + ex
.

(a) Find the probability that 0.05 < X � 0.1.
(b) Find the density f (x) and use it to approximate P(0.05 < X � 0.1).



B.9. Continuous Random Variables 363

(x, y)

(x, y +   y)∆ (x +   x, y +   y)∆

(x +   x, y)∆

∆

Figure B.3. Discretization of the continuous bivariate distribution.

Solution. (a) From (B.8) we have

P(0.05 < X � 0.1) = F(0.1) − F(0.05)

= e0.1

1 + e0.1 − e0.05

1 + e0.05
= 0.012 48.

(b) First evaluate the density

f (x) = F ′(x) = ex

(1 + ex)2 .

From (B.9) we obtain

P(0.05 < X � 0.1) ≈ f (0.05)(0.1 − 0.05)

= e0.050.05

(1 + e0.05)2
= 0.012 49.

B.9.3 Multivariate Probability Density

Now consider a joint distribution with cumulative function FX,Y (x, y) = P(X �
x, Y � y). To discretize this joint distribution we will divide the plane (x, y) into
squares with sides �x,�y. Our task now is to find the probability of these little
squares:

P(x < X � x + �x, y < Y � y + �y).

Referring to Figure B.3 we can write

P(x < X � x + �x, y < Y � y + �y)

= P(X � x + �x, Y � y + �y) − P(X � x, Y � y + �y)

− P(X � x + �x, Y � y) + P(X � x, Y � y)

= FX,Y (x + �x, y + �y) − FX,Y (x + �x, y)

− FX,Y (x, y + �y) + FX,Y (x, y). (B.11)



364 Appendix B. Probability

The Taylor expansion of (B.11) yields

P(x < X � x + �x, y < Y � y + �y) ≈ ∂2FX,Y (x, y)

∂x∂y
�x�y

(see Exercise B.26).

The function

fX,Y (x, y) := ∂2FX,Y (x, y)

∂x∂y

is called the joint density function of the continuous random variables X, Y . In
general, for n random variables X1, . . . , Xn, the joint density is

fX1,...,Xn(x1, . . . , xn) = ∂nFX1,...,Xn(x1, . . . , xn)

∂x1 · · · ∂xn (B.12)

with the interpretation

P

( n⋂
i=1

(xi < Xi � xi + �xi)

)
≈ fX(x1, . . . , xn)�x1 × · · · × �xn.

B.9.4 Stochastic Independence

Recall that the random variables X1, X2, . . . , Xn are stochastically independent if
and only if the events

Xi � xi

are independent for all xi ∈ R, that is,

P(X1 � x1, . . . , Xn � xn) = P(X1 � x1) × · · · × P(Xn � xn)

The same equality in terms of a CDF looks as follows:

FX1,...,Xn(x1, . . . , xn) = FX1(x1) × · · · × FXn(xn). (B.13)

Using the expression for joint density (B.12) and the definition of independence
(B.13), we find

f (x1, . . . , xn) = ∂nF (x1, . . . , xn)

∂x1 · · · ∂xn = ∂n[FX1(x1) × · · · × FXn(xn)]
∂x1 · · · ∂xn

= F ′
X1

(x1) × · · · × F ′
Xn

(xn) = fX1(x1) × · · · × fXn(xn).

For independent continuous random variables the joint density is a product of
marginal densities.

B.10 Normal Distribution

The normal distribution is fully characterized by its mean and variance. For a
random variable X distributed normally with mean µ and variance σ 2 we write

X ∼ N(µ, σ 2).
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0 x−x

1 −     (x)Φ(−x)Φ

Figure B.4. Density of a symmetric random variable and tail probabilities.

The PDF for such a random variable is

φX(x) = 1√
2πσ

exp

(
− (x − µ)2

2σ 2

)
.

N(0, 1) is called the standard normal distribution.

Fact. When X has a normal distribution, then a + X and aX are also normally
distributed.

Example B.24. If X ∼ N(µ, σ 2), what is the distribution of Y = (X − µ)/σ?

Solution. Because Y is a linear transform of X we know that the distribution of Y
is normal. Thus we only need to find out about the mean and variance of Y. To this
end,

E[Y ] = E[X − µ]
σ

= µ − µ

σ
= 0,

Var(Y ) = Var

(
X − µ

σ

)
= 1

σ 2 Var(X − µ) = Var(X)

σ 2 = σ 2

σ 2 = 1.

Y has a standard normal distribution.

B.10.1 CDF of a Standard Normal Variable

Let X be a standard normal variable, we will denote its cumulative distribution
function by Φ:

Φ(z) := P(X � z) =
∫ z

−∞
1√
2π

exp(− 1
2x

2) dx.

Since the standard normal density is symmetric around zero the area in both tails of
the distribution is the same (see Figure B.4), and we have the following symmetry
property:

1 − Φ(x) = Φ(−x).

B.10.2 Deriving Black–Scholes Formula

The following example computes the expectation of a truncated lognormal variable,
which is needed for the famous Black–Scholes formula.
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Example B.25. Evaluate the expectation

E[(eX − ea)1X>a],
where

1X>a = 1 for X > a,

1X>a = 0 otherwise,

and X ∼ N(µ̃, σ̃ 2).

Solution. One possible solution strategy is to compute the expectation as it stands:

E[(eX − ea)1X>a] =
∫ ∞

a

(ex − ea)
1√

2πσ̃
exp

(
− (x − µ̃)2

2σ̃ 2

)
dx.

This works but it is quite messy. A better way is to write X in terms of a standard
normal variable Z:

X = µ̃ + σ̃Z,

where Z ∼ N(0, 1). Then the original expectation becomes

E[(eX − ea)1X>a] = E[(eµ̃+σ̃Z − ea)1µ̃+σ̃Z>a]
= eµ̃E[eσ̃Z1Z>(a−µ̃)/σ̃ ] − eaE[1Z>(a−µ̃)/σ̃ ]
= I1 − I2.

This leaves us with two integrals I1 and I2. The latter is easy to deal with—it is
simply the CDF of a standard normal distribution (see Section B.10.1):

I2 = eaP

(
Z >

a − µ̃

σ̃

)
= ea

(
1 − Φ

(
a − µ̃

σ̃

))
= eaΦ

(
µ̃ − a

σ̃

)
.

The first expectation can be expressed as

I1 = eµ̃
∫ ∞

(a−µ̃)/σ̃

eσ̃ z 1√
2π

e−z2/2 dz

= 1√
2π

eµ̃
∫ ∞

(a−µ̃)/σ̃

e−(z2−2σ̃ z)/2 dz.

The important trick is to write the exponent inside the integral as a square; this is
accomplished by adding and subtracting σ̃ 2 inside the bracket in the exponent:

1√
2π

eµ̃
∫ ∞

(a−µ̃)/σ̃

e−(z2−2σ̃ z)/2 dz = 1√
2π

eµ̃+σ̃ 2/2
∫ ∞

(a−µ̃)/σ̃

e−(z2−2σ̃ z+σ̃ 2)/2 dz

= 1√
2π

eµ̃+σ̃ 2/2
∫ ∞

(a−µ̃)/σ̃

e−(z−σ̃ )2/2 dz.

The last expression looks like an expectation again, this time

eµ̃+σ̃ 2/2
∫ ∞

(a−µ̃)/σ̃

1√
2π

e−(y−σ̃ )2/2 dy = eµ̃+σ̃ 2/2E[1Y>(a−µ̃)/σ̃ ]

= eµ̃+σ̃ 2/2P

(
Y >

a − µ̃

σ̃

)
,
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where Y ∼ N(σ̃ , 1). We now standardize Y by subtracting its mean and the expec-
tation becomes

eµ̃+σ̃ 2/2P

(
Y >

a − µ̃

σ̃

)
= eµ̃+σ̃ 2/2P

(
Y − σ̃ >

a − µ̃ − σ̃ 2

σ̃

)

= eµ̃+σ̃ 2/2
[

1 − Φ

(
a − µ̃ − σ̃ 2

σ̃

)]

= eµ̃+σ̃ 2/2Φ

(
µ̃ + σ̃ 2 − a

σ̃

)
.

To conclude, for X ∼ N(µ̃, σ̃ 2) we have

E[(eX − ea)1X>a] = eµ̃+σ̃ 2/2Φ

(
µ̃ + σ̃ 2 − a

σ̃

)
− eaΦ

(
µ̃ − a

σ̃

)
. (B.14)

B.10.3 Skewness, Kurtosis and the Moment-Generating Function

One can use the higher moments (powers) of a random variable to characterize its
distribution. The rth moment is defined by the expectation:

µ′
r = E[Xr ].

More often we make use of the rth central moment:

µr = E[(X − E[X])r ].

Example B.26. For X ∼ N(µ, σ 2) we have

µr = 0 for r odd,

µr = r!
(r/2)!

σ r

2r/2 .

Thus, for example,

µ4 = E[(X − E[X])4] = 4!
2!

σ 4

22 = 3σ 4. (B.15)

The normalized third moment
µ3

σ 3

is called the skewness and is supposed to measure whether the distribution is sym-
metric around the mean. The normalized fourth moment

µ4

σ 4 ,

called the kurtosis, is meant to measure how heavy are the tails of the distribution.
The normal distribution has a kurtosis of 3 by virtue of (B.15).

The moments of a distribution are concisely captured by the moment-generating
function,

mX(λ) := E[eλX],
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since differentiation of mX with respect to λ gives

dnmX(λ)

dλn
= dnE[eλX]

dλn
= E

[
dneλX

dλn

]
= E[XneλX]

and with λ = 0 the nth derivative of MGF gives the nth non-central moment:

m
(n)
X (0) = E[Xn].

Example B.27. Evaluate the MGF of a normal variable and compute its first deriva-
tive.

Solution. For X ∼ N(µ, σ 2) we have λX ∼ N(λµ, λ2σ 2). It is now enough to
apply formula (B.14) with µ̃ = λµ, σ̃ = λσ , a → −∞ to find

mX(λ) = E[eλX] = eµλ+σ 2λ2/2.

After differentiation we have

m′
X(λ) = (µ + σ 2λ)eµλ+σ 2λ2/2,

m′
X(0) = µ,

as expected.

B.10.4 Multivariate Normal Distribution

The joint normal distribution is fully characterized by its mean and the variance–
covariance matrix. For a R

n-valued random variableX with joint normal distribution
with mean µ ∈ R

n and variance–covariance matrix Σ , we write

X ∼ N(µ,Σ).

The PDF for such a random variable is

f (x) = 1√
(2π)n| det Σ | exp(− 1

2 (x − µ)∗Σ−1(x − µ)).

Could it happen that Σ is not invertible? If this were the case, then the columns of
Σ would be linearly dependent and we could find a linear combination α ∈ R

n such
that Σα = 0. But in that case we also have α∗Σα = 0. By virtue of the portfolio
theorem (B.4) and (B.5) we have α∗Σα = Var(α∗X) implying that Var(α∗X) = 0.
But the variance can only be zero if α∗X = const. In this case we can express
one of the variables as a linear combination of the remaining variables. After we
have removed all the redundant random variables, the covariance matrix Σ becomes
invertible.

Fact. WhenX has a joint normal distribution andA ∈ R
m×n, then the distribution

of AX is again jointly normal. In particular, the marginal distribution of each
individual variable Xk is normal.
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Example B.28. If X1 and X2 are joint normal with µ1 = 1, µ2 = −1, σ1 = 2,
σ2 = 1 and correlation ρ = −0.7, describe the marginal distribution of X1, X2, and
the joint distribution of Y1 = X1 +X2 and Y2 = 3X1 −X2. Evaluate the correlation
between Y1 and Y2.

Solution. We have

µX =
[

1
−1

]
,

ΣX =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
=
[

4 −1.4
−1.4 1

]
.

It follows immediately that

X1 ∼ N(1, 4),

X2 ∼ N(−1, 1).

For the variables Y1 and Y2 we have[
Y1

Y2

]
=
[

1 1
3 −1

] [
X1

X2

]
,

Y = AX

and Y ∼ N(µY ,ΣY ), where

µY = AµX =
[

1 1
3 −1

] [
1

−1

]
=
[

0
4

]
,

ΣY = AΣXA∗ =
[

1 1
3 −1

] [
4 −1.4

−1.4 1

] [
1 3
1 −1

]
=
[

2.2 8.2
8.2 45.4

]
.

The correlation between Y1 and Y2 is

ρY1,Y2 = 8.2√
2.2 × 45.4

= 0.82.

B.10.5 Conditional Distribution

For two random variables X, Y the conditional probability density of Y given X is

fY |X(y | x) = fX,Y (x, y)

fX(x)
;

this definition follows naturally from the definition of conditional probability (B.1).
For a fixed value of x the function fY |X(y | x) has all the properties of the density
function, that is,

fY |X(y | x) � 0,∫ ∞

−∞
fY |X(y | x) dy = 1.
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Example B.29. LetX andY be two jointly normal random variables with correlation
coefficient ρ. The conditional distribution of Y given X is normal:

Y | (X = x) ∼ N

(
µY + ρ

σY

σX

(x − µX), σ 2
Y (1 − ρ2)

)
.

Conditional distributions are important in filtering, where Y represents an unob-
served (latent) variable such as stochastic volatility, and X is an observed variable,
such as stock price. The conditional normal distribution is the basis of the so-called
Kalman filter.

B.11 Quantiles

The 100 × q% quantile of a random variable X or of its corresponding distribution
is denoted ξq and is defined as the smallest number ξ such that P(X � ξ) � q. For
continuous random variables we have simply

P(X � ξq) = q.

Special names for quantiles are the median (q = 0.5), the quartile (q = 0.25, 0.5
or 0.75), etc. Quantiles feature prominently in statistical hypothesis testing. In
finance, value at risk is the size of loss which is exceeded in no more than 100×q%
of cases, meaning it is calculated as a quantile ξ1−q from the distribution of losses.

Example B.30. A portfolio manager believes that the overnight loss of his portfolio
is distributed normally with mean £0 and standard deviation £10 000. Find the 5%
one-day value at risk for this portfolio.

Solution. Let us denote the portfolio loss by X, X ∼ N(0, 10 0002). The value at
risk v5% is by definition a number such that

P(X � v5%) = 0.95. (B.16)

To find v5% we normalize the random variable on the left-hand side:

X � v5% ⇔
X − 0 � v5% − 0 ⇔
X − 0

10 000
� v5% − 0

10 000
.

From Example B.24 we know that Z = (X − 0)/10 000 has a standard normal
distribution. Equation (B.16) becomes

P

(
Z � v5% − 0

10 000

)
= 0.95.

If we denote by z95% the 95% quantile of a standard normal distribution, then
v5%

10 000
= z95%.
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We are nearly finished, because z5% can be found in statistical tables:

z95% = 1.645,

v5% = 10 000z95% = 16 450.

The overnight 5% value at risk is £16 450.

B.12 Relationships among Standard Statistical Distributions

Let X1, X2, . . . , Xn,Xn+1, Y1, . . . Ym be independent standard normal variables.
Note that

E[X2
i ] = Var(Xi) = 1.

1. The marginal distribution of X2
1 + X2

2 + · · · + X2
n is χ2 with n degrees of

freedom. Consequently, the mean of χ2(n) is

E[X2
1 + X2

2 + · · · + X2
n] = E[X2

1] + E[X2
2] + · · · + E[X2

n] = n.

If Xi are independent, then X2
i are also independent and therefore also un-

correlated; consequently,

Var(X2
1 + X2

2 + · · · + X2
n) = nVar(X2

i ) = n(E[X4
i ] − (E[X2

i ])2) = 2n,

because we know that the kurtosis of a normal distribution is 3, E[X4
i ] =

3 Var(Xi), E[X2
i ] = Var(Xi).

2. The marginal distribution of

Xn+1√
(X2

1 + X2
2 + · · · + X2

n)/n

is the Student t distribution with n degrees of freedom.
3. The marginal distribution of

Y 2
1 + Y 2

2 + · · · + Y 2
m

m

/
X2

1 + X2
2 + · · · + X2

n

n

is an F distribution with m and n degrees of freedom.
4. If X ∼ N(µ, σ 2), then Y = eX has a lognormal distribution with mean

µY = eµ+σ 2/2

and variance
σ 2
Y = e2µ+2σ 2 − e2µ+σ 2

.

Conversely, if Y has a lognormal distribution with mean µY and variance σ 2
Y ,

then X = ln Y has a normal distribution with mean

µ = ln(µ2
Y /
√
µ2

Y + σ 2
Y )

and variance
σ 2 = ln(1 + σ 2

Y /µ
2
Y ).
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B.13 Notes

Mood et al. (1974) is an excellent introduction to probability and statistics; this
appendix covers roughly Chapters 1–5. Among the more advanced texts de Finetti
is always worth reading for his intuitive ground-up approach. Detailed discussion of
probability distributions and their properties is given in Johnson et al. (1993, 1994)
and Kotz et al. (2000). Cherubini et al. (2004) is a good starting point to find out
about copulas in finance.

B.14 Exercises

Exercise B.1. If two random variables X and Y are uncorrelated, then
(a) Cov(X, Y ) = 0;
(b) X and Y are independent;
(c) E[XY ] = 0;
(d) none of the above.

Exercise B.2. If two random variables X and Y are independent, then
(a) E[X + Y ] = 0;
(b) Cov(X2, Y 3) = 0;
(c) E[XY ] = (E[X])E[Y ];
(d) none of the above.

Exercise B.3. Which of the following statements is FALSE, thereby indicating that
F(x) = x2ex/(1 + x2ex) is not a CDF?

(a) F(x) → 0 as x → −∞.

(b) F(x) → 1 as x → ∞.
(c) F(x2) � F(x1) for all x2 � x1.

Exercise B.4. Which of the following statements is FALSE, thereby indicating that
F(x, y) = 2ex+y/(1 + ex)(1 + ey) is not a CDF?

(a) F(x, y) → 0 as x, y → −∞.

(b) F(x, y) → 1 as x, y → ∞.
(c) F(x2, y2) � F(x1, y1) for all x2 � x1 and y2 � y1.

Exercise B.5. Knowledge of the marginal distribution implies the knowledge of the
joint distribution.

(a) YES for discrete random variables, YES for continuous random variables.
(b) NO for discrete random variables, YES for continuous random variables.
(c) YES for discrete random variables, NO for continuous random variables.
(d) NO for discrete random variables, NO for continuous random variables.

Exercise B.6. What is the marginal CDF FX(x) of the joint CDF FX,Y (x, y) =
exp(x + 2y)/(1 + exp(x))(1 + exp(y))2?

(a)
exp(x)

1 + exp(x)
.

(b)
exp(x)

4(1 + exp(x))
.
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(c)
exp(2x)

(1 + exp(x))2 .

(d)
exp(x)

4(1 + exp(x))2 .

Exercise B.7. You are given a joint PDF

f (x, y) = 1

2π
√
(1 − ρ2)

exp

(
−x2 + y2 − 2ρxy

2(1 − ρ2)

)
.

Which of the following integrals will give E[XY ]?
(a)
∫ ∞

−∞

∫ ∞

−∞
− ρxy

2(1 − ρ2)
exp

(
− x2 + y2

2(1 − ρ2)

)
dx dy.

(b)
1

2π
√
(1 − ρ2)

∫ ∞

−∞

∫ ∞

−∞
xy exp

(
−x2 + y2 − 2ρxy

2(1 − ρ2)

)
dx dy.

(c)
1

2π
√
(1 − ρ2)

∫ ∞

−∞

∫ ∞

−∞
exp

(
− x2 + y2

2(1 − ρ2)

)
dx dy.

(d)
1

2π
√
(1 − ρ2)

∫ ∞

−∞

∫ ∞

−∞
xy exp

(
− x2 + y2

2(1 − ρ2)

)
dx dy.

Exercise B.8. Under what circumstances is it the case that

E[f (X)g(Y )] = E[f (X)]E[g(Y )]?
(a) Always when X and Y are uncorrelated.
(b) Always when X and Y are perfectly correlated (linearly dependent).
(c) Always when X and Y are stochastically independent.
(d) Always when f and g are measurable functions.

Exercise B.9. Suppose that X1, X2 and X3 are three independent and identically
distributed variables, each with two possible values 0.8 or 1.2. How many states
are needed to describe the joint distribution of X1, X2 and X3?

(a) 2.
(b) 4.
(c) 6.
(d) 8.

Exercise B.10. The covariance between X and Y is everything below EXCEPT

(a) E[(X − E[X])(Y − E[Y ])].
(b) E[XY − E[X]E[Y ]].
(c) E[X − E[X]]E[(Y − E[Y ])].
(d) E[XY ] − E[X]E[Y ].

Exercise B.11. If X is a column vector of random variables, how is the variance–
covariance matrix obtained in matrix notation?



374 Appendix B. Probability

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0 (1) (2)

(3) (4)

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0 (a) (b)

(c)

−2 −1 0 1 2 3

(d)

Figure B.5. Diagrams for Exercise B.12.

(a) E[(X − E[X])∗(X − E[X])].
(b) E[XX∗] − E[X]E[X]∗.

(c) X∗X − E[X∗]E[X].
(d) None of the above.
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Table B.7. Joint distribution of returns in the shipping and steel industries.
Shipping

−20% −10% 0% 10% 20%
−20% 0.02 0.03 0.03 0.04 0.04
−10% 0.03 0.05 0.05 0.07 0.07

Steel 0% 0.03 0.03 0.03 0.03 0.05
10% 0.04 0.03 0.03 0.05 0.05
20% 0.04 0.03 0.03 0.07 0.03

Exercise B.12. Match up the PDFs (1)–(4) with the CDFs (a)–(d) (see Figure B.5).

Exercise B.13. You are given two random variables R and S with known means
and variances:

E[R] = 2,

Var(R) = 4,

E[S] = −1,

Var(S) = 2.

Find the expected value of R × S if you know that

(a) R and S are independent:
E[RS] =

(b) the correlation between R and S is 0.15:

E[RS] =
Exercise B.14 (joint distribution of returns). Consider two industry sectors: ship-
ping and steel. Suppose that the histogram of historical annual rates of return in
these sectors is given in Table B.7.

(a) Are the two returns independent? Justify your answer.
(b) Find the expected rate of return in both industries:

E[rSteel] =
E[rShipping] =

(c) Find the standard deviation of the returns in both industries:

σSteel =
σShipping =

(d) Find the covariance between the two returns:

σSteel,Shipping =
(e) Prepare a short MATLAB code that performs these operations.

Exercise B.15 (expectation of independent random variables). Assume that X1
and X2 are independent random variables with means µ1, µ2 and variances σ 2

1 , σ
2
2 .

Find E[X1X
2
2].
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Exercise B.16 (portfolio rule for covariances). The covariance matrix of two
returns, X1 and X2, is

ΣX =
[

0.01 −0.01
−0.01 0.04

]
.

An asset management company created three new portfolios with returns:

Y1 = 0.25X1 + 0.75X2,

Y2 = 0.5X1 + 0.5X2,

Y3 = αX1 + (1 − α)X2.

(a) Find the correlation between Y1 and Y2.

(b) Find α such that Y2 and Y3 are uncorrelated.

(c) Write down the correlation matrix of the returns Y1, Y2 and Y3 with α = 0.75.

(d) Prepare a short MATLAB code that performs these operations.

Exercise B.17 (towards Brownian motion). Consider a time interval [0, 1] and
divide it into N equally sized time segments placing ticks at positions

tk = k

N
, k = 1, 2, . . . , N.

The distance between two consecutive ticks is then

�t = 1

N
.

We associate one random variable �Xk with each time tick and assume that

Var(�Xk) = σ 2�t = σ 2

N
.

We assume that �X1, . . . , �XN are uncorrelated. We can think of �Xi as a random
shock arriving at time ti .

(a) Find
Var(�X1 + �X2 + · · · + �XN) =

(b) Find
Var(t1�X1 + t2�X2 + · · · + tN�XN) =

(Hint:
∑N

k=1 k2 = 1
6N(N + 1)(2N + 1).)

(c) What happens to the value of

Var(�X1 + �X2 + · · · + �XN)

as N goes to infinity (the time subdivision gets finer and finer)?

(d) What happens to the value of

Var(t1�X1 + t2�X2 + · · · + tN�XN)

as N goes to infinity?

(e) Write the limiting value of Var(t1�X1+t2�X2+· · ·+tN�XN) as an integral.
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(f) Consider two functions of time a(t) and b(t). What is the covariance be-
tween a(t1)�X1 + · · · + a(tN )�XN and b(t1)�X1 + · · · + b(tN )�XN as N

approaches infinity?

lim
N→∞ Cov

( N∑
i=1

a(ti)�Xi,

N∑
j=1

b(tj )�Xj

)
=

Exercise B.18 (discretization of a continuous random variable). Suppose that
the rate of return X has CDF FX(x) = 1/(e−10(x−0.05) + 1).

(a) Find the probability that the rate of return is between 0% and 10%:

P(0 < X � 0.1) =
(b) Discretize the above distribution into seven brackets:

Return −20%
or less

−20%
to − 10%

−10%
to 0%

0%
to 10%

Probability

Return 10%
to 20%

20%
to 30%

30%
or more

Probability

Exercise B.19 (log contract pricing). Calculate the expectation,

e−rT EQ[ln ST ],
if you know that the risk-neutral distribution of ln ST is normal with mean ln S0 +
(r − 1

2σ
2)T and variance σ 2T .

Exercise B.20 (joint distribution of continuous random variables). Suppose that
the joint cumulative distribution function of random variables X and Y is given as
follows:

FX,Y (x, y) = exp(2x + 3y)

(1 + exp(x))2(1 + exp(3y))
.

(a) Compute the marginal CDFs FX(x) and FY (y). Are X and Y independent?
(b) Compute the joint density function fX,Y (x, y).

Exercise B.21 (quantiles). Assume that the one-month gain of a mutual fund port-
folio is X = £1000Y − £10 000, where Y is distributed as χ2 with 10 degrees of
freedom. Find the performance threshold ξ5% such that X will underperform ξ5%
only in 5% of cases:

ξ5% =
Exercise B.22 (chi-squared and gamma distributions). The χ2(n) is a special
case of the gamma distribution (α, β). The density of the gamma distribution is
given as

f (x) = βα

(α)
xα−1e−βx.

What values of α and β must we choose to obtain χ2(n) = (α, β)?
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Table B.8. Random number simulation of three uncorrelated standard normal variables.

ε1 ε2 ε3

1 −0.300 −1.278 0.244
2 1.276 1.198 1.733
3 −2.184 −0.234 1.095
4 −1.087 −0.690 −1.690
5 −1.847 −0.978 −0.744
6 −2.118 −0.568 −0.404
7 0.135 −0.365 −0.327
8 −0.370 1.343 −0.085
9 −0.186 −0.513 1.972

10 0.866 2.376 −0.655
11 1.661 −1.612 0.539
12 0.902 1.919 −0.085
13 −0.524 0.675 −0.381
14 0.758 −1.444 −0.847
15 −1.522 −0.363 −0.032
16 0.028 −0.323 2.195
17 −1.742 −0.736 −2.578
18 1.448 −1.280 −0.654
19 0.758 0.467 0.875
20 0.596 −1.372 −1.116

Exercise B.23 (power contract pricing). Calculate the expectation

e−rT EQ[Sγ

T ]
for an arbitrary γ if you know that the risk-neutral distribution of ln ST is normal
with mean ln S0 + (r − 1

2σ
2)T and variance σ 2T . (Hint: make use of the moment-

generating function of a normal variable.)

Exercise B.24 (generating a desired covariance matrix). A researcher has found
that the monthly returns of three investment funds, IF1, IF2 and IF3 have the covari-
ance matrix

Σ =
⎡
⎣ 0.01 −0.01 −0.02

−0.01 0.04 0.06
−0.02 0.06 0.16

⎤
⎦

and the average returns are 0.05, 0.07 and 0.1, respectively. The returns appear to
be independent, identically distributed over time.

In a simulation exercise the researcher would like to generate the future values
of the three returns for the next 20 months. For this purpose he uses the random
number generator in Excel, creating three uncorrelated series with standard normal
distribution, ε1, ε2, ε3, given in Table B.8.

The researcher vaguely remembers from his MSc degree that the exercise requires
a decomposition of the covariance matrix Σ . He calculates the lower triangular
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matrix of the Cholesky decomposition of Σ

σ =
⎡
⎣ 0.1 0 0

−0.1 0.1732 0
−0.2 0.2309 0.2582

⎤
⎦ ,

but is unsure what to do next. Your task is to generate 20 random values of IF1, IF2
and IF3 using the available information if you know that

Σ = σσ ∗.

Exercise B.25. Consider two discrete random variables X and Y. Show that if

P(X � x, Y � y) = P(X � x)P (Y � y),

that is, X and Y are independent, then also

P(X = x, Y = y) = P(X = x)P (Y = y).

Exercise B.26. Using a Taylor expansion show that

P(x1 < X1 � x1 + �x1, x2 < X2 � x2 + �x2)

can be approximated in terms of the cumulative distribution function as

∂2F(x1, x2)

∂x1∂x2
�x1�x2.
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Index

adapted process, 174, 182
affine process, 166
arbitrage

continuous-time, 243
dynamic, 192
type I, 38
type II, 38

arbitrage theorem, 42
dynamic, 192

arbitrage-adjusted Sharpe ratio, 71–74
arrival intensity, 140
Arrow–Debreu security, 16–17
Asian option pricing, 278–79
asset pricing duality, 47

baseline risk aversion, see risk aversion,
HARA utility

basis asset, 11
Bellman’s principle of optimality, 311
binomial model, 276

continuous-time limit
numerical, 128
theoretical, 164

lattice, 263
numerical implementation, 114
option delta, 111
Poisson limit, 136–42

Black–Scholes delta, 285
Black–Scholes formula, 365

as a limit of binomial model, 135, 164
as a limit of multinomial model,

304–5, 309
in continuous time, 234–36

Black–Scholes partial differential
equation (PDE), 245–46

bliss point, 67
bliss point condition

and problems with Sharpe ratio,
70–71

bond
pure discount, 249
risk-free, 36

Brownian motion, 143
characterization of, 228
construction, 213–15
geometric, 222–23
properties, 217–18
with drift, 220

budget constraint
and no-arbitrage pricing, 199

calibration, 106, 136–38
CAPM

and option hedging, 285
CARA utility, 57
central limit theorem, 142
certainty equivalent

graphical description, 56
chain rule, 330
change of measure, 193

conditional, 193–95, 197
unconditional, 196

characteristic function, 163
affine process, of, 166
and FFT, 164–66
and probability density, 164–66

Cholesky factorization, 254
and redundant assets, 242

circular convolution, 153
and option pricing, 154–56

coefficient of absolute risk aversion, 58
coefficient of local relative risk aversion,

58
complete market, 14

hedging, 19
complex multiplication

= adding angles, 149
complex number

as 2D vectors, 147
on a unit circle, 148

complex numbers, 147
equally distributed on unit circle,

149–51
compounded return, 189
conditional expectation, 183

properties, 174–76
conditional probability, 348
conditional variance, 177
constrained optimization, 337

and Lagrange multiplier, 200, 338
convergence in distribution, 164, 167,

308
copula, 352, 372
correlation, 357
covariance, 357
CRRA utility, 58
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CRRA utility optimizer, 88–89
and quadratic utility, 93–94
as a procedure, 92–93
with empirical return distribution,

90–92
cyclic convolution, see circular

convolution

degrees
conversion to radians, 148

delta, 109
Black–Scholes, 135–36, 285, 346
dynamically optimal, 287
locally optimal, 286
Poisson, 141

density process, 197
DFT, see discrete Fourier transform
differentiation, 329
dimension, 13

and rank, 16
of marketed subspace, 14

discrete Fourier transform (DFT), 152
and option pricing, 156–58
forward, 152
inverse, 152

dominance
stochastic, 38

dynamic programming, 311
dynamically optimal hedge, 283

elementary outcomes (probability), 179
equivalent martingale measure, 192

importance, 197, 303
ESRE, see expected squared replication

error
events, probability, 179

problems with, 180
expectation

of continuous random variable, 362
properties, 355
unconditional, 118

explicit finite-difference method, 263–64
exponential distribution, 140
exponential utility, see CARA utility
extrapolation

counterproductive, 269
Crank–Nicolson method, 274
for explicit method, 268
Richardson’s, 277

fast Fourier transform (FFT), 158–60
and option pricing, 161, 306

Feynman–Kac formula, 247

FFT, see fast Fourier transform
finite difference method

Markov chains and, 266–68
finite-difference method, 251

Crank–Nicolson, 273–74
explicit, 263–64
extrapolation, 268, 274–75
fully implicit, 270–73
oscillatory convergence, 269–70
stability, 265–66
upwind differences, 265

first-order condition, 60, 337
focus asset, 11

pricing, 40
Fourier transform

continuous, 162, 167
frictionless trading, 3
full rank, 16

gamma, 347
and hedging error, 294

generalized Sharpe ratio, 82
Girsanov theorem

and optimal investment, 240
derivation, 237–40
in risk-neutral pricing, 235

good deals, 302
gradient, 96, 335

Hansen–Jagannathan duality, 205
HARA utility, 59

and near-arbitrage opportunities,
77–78

HARA utility optimizer, 94
with several risky assets, 96–101

hedging, 10–11
and measurement units, 36
complications, 12
dynamic, 108–16, 288–92
geometric interpretation of optimal,

30–31
incomplete market, 27–34, 282, 285
least squares, 30
minimizing expected SRE, 32–34,

293
minimizing squared replication error

(SRE), 30
perfect, 11
static, 107
with redundant basis assets, 26

heging
with leptokurtic returns, 306

Hessian, 96, 335
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identity matrix, 16
IID returns

properties, 125–27
implicit finite-difference method,

270–73
in the money, 107
independence

linear, 13
stochastic, 352–53

infinitely divisible distribution, 308
infinitely divisible distributions, 142

and Lévy processes, 143, 167
information filtration, 181
insider trading, 174
integration, 338
inverse matrix, 17

and Arrow–Debreu securities, 17, 19
EXCEL, 18
facts, 17
MATLAB, 18
non-existence, 12

inverse utility function, 62
investment potential, 63, 65

in Black–Scholes model, 241
invariance of, 66
of dynamic trading, 205
of option hedging, 299

Itô formula, 223–28
multivariate, 225
proof, 229
with jumps, 230

Itô integral, 218, 230
Itô process, 218

as a martingale, 228

Kolmogorov’s backward equation, 247
kurtosis, 367

Lagrange multiplier, 200, 338
Lagrangian, 200
lattice

binomial, 106, 263, 276
multinomial, 276, 280–82

law of conditional constant, 176
law of iterated expectations, 119–20
law of one price, 39
least squares

and hedging, 30, 294
and QR decomposition, 35, 49
geometric interpretation of, 30–31
numerical stability, 34

leptokurtic returns
and hedging errors, 306

Lévy
characterization of Brownian motion,

228
continuity theorem, 164
process, 143, 216, 230

linear independence, 13
local consistency, 276

binomial model, 278
explicit method, 267
fully implicit method, 272–73

local risk aversion, see risk aversion,
HARA utility, 63

local variable, 93
locally non-stochastic process, 223
locally optimal hedge, 283
log utility

as a limit of power utility, 58
lognormal distribution, 143, 371
lookback option, 173

marginal distribution, 351
marginal utility

and state price density, 201
market price of risk, 241
marketed subspace, 13

dimension, 14
structure, 14

Markov chain
approximation, 216, 230
finite-difference methods and,

266–68
local consistency of, 266–68

Markov process, 171, 178
and state variables, 173

martingale
and asset prices, 190
construction, 190
definition, 189
numerical stability and, 266
properties, 190, 197

martingale duality method
for optimal investment, 199

martingale representation theorem,
219–20, 305

MATLAB (programming language)
fast Fourier transform, 161
local variable, 93
procedure, 92
simple matrix manipulation, 4–12

matrix
as a collection of payoffs, 6
identity, see identity matrix
inverse, see inverse matrix
invertible, 16
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matrix (continued)
multiplication, 8–9

and portfolio payoff, 10
EXCEL, 10
MATLAB, 10

non-singular, 16
orthogonal, 51
rank of a, 16
regular, 16
transposition, 6–8
variance–covariance, 100

mean
properties, 126–27
time scaling, 127

mean value process, 283
mean–variance efficient portfolio, 103
mean–variance hedging, 282
measurability

and information timing, 174
measure

equivalent, 192
signed, 304

mispricing, 39, 243
moment-generating function, 240, 367
Monte Carlo simulation, 250, 288–92

near-arbitrage opportunities, 302
Newton’s root-finding algorithm, 88
no-arbitrage pricing

and budget constraint, 199
and PDEs, 246

normal distribution, 364
multivariate, 368

objective probabilities, 106
optimal investment, 59

and Girsanov theorem, 240
and near-arbitrage opportunities,

77–78
approximation of, 84–88
dynamic

complete market, 198
incomplete market, 299–301

martingale duality method, 199
Newton’s algorithm, 88
numerical techniques for, 84–95
with empirical return distribution,

90–92
with several risky assets, 96–101

optimization, 336
constrained, 337

option
call, 3
delta, 109
intrinsic value, 107
lookback, 173

option pricing
binomial model, 105–16
fast Fourier transform, 161
multinomial model, 304
Poisson jump model, 141

options
and portfolio insurance, 104–5

Ornstein–Uhlenbeck process, 222,
226–27, 232, 249

OTC security, 11
out of the money, 107

partial derivatives, 333
partial differential equation (PDE)

and no-arbitrage pricing, 246–48
boundary conditions, 263
interpretation of, 261–63
solution, 247–48

path independence, 170, 173
payoff, 3

as a vector, 3
graphical representation of, 4
of a portfolio, 5
operations with, 4–6

PDE, see partial differential equation
perfect hedge, 11
perpendicular, see vector, orthogonal
Poisson distribution, 140
Poisson jump process, 216, 230
portfolio, 5

mean–variance efficient, 103
replicating, 11
sub-replicating, 40
super-replicating, 40

power utility, see CRRA utility
price bounds, 299, 302
pricing

no-arbitrage, 40, 46–47
relative, 40

pricing kernel, 154, 201
probability

objective, 106
risk-neutral, 45

probability measure
properties, 180

probability space, 348
procedure, 92
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process
adapted, 174, 182
compound Poisson, 325
Lévy, 216
locally non-stochastic, 223
Markov, 171

pure discount bond, 249
put option, 105

QR decomposition, 49–51
and Gramm–Schmidt

orthogonalization, 50
quadratic utility, 67

bliss point, 67
with several assets, 99

quantile, 370

radians
conversion to degrees, 148

Radon–Nikodym derivative, 196
random variable, 182
random walk

discrete-time, 214
rank, 16

and dimension, 16
facts, 16
full, 16

recombining lattice
and Markov property, 171

redundant security, 13–14
mispriced, 39

replicating portfolio, 11, 13
replication, 11
replication error, 30
return

excess, 36
rate of, 36
total, 36

reverse order on a circle, 151
right angle, see vector, orthogonal
risk aversion

local, 63
risk premium, 57
risk-neutral pricing

and absence of arbitrage, 241
continuous-time, 234
log contract example, 236
with dividends, 237
with several risky assets, 244

risk-neutral probability, 45
in multi-period model, 116–19

scenario, 2
uninsurable, 193

SDE, see stochastic differential equation

second-order condition, 337
security

redundant, 13
self-financing strategy, 114

as a martingale, 191
no-arbitrage pricing, 114

Sharpe ratio, 69
and near-arbitrage opportunities,

75–77
arbitrage-adjusted, 71–74
generalized, 82
problems with, 70
with multiple assets, 101

σ -algebra, 181
skewness, 367
squared error process, 293
state prices, 41

and absence of arbitrage, 41–44
and asset returns, 44
and no-arbitrage pricing, 46

state variable, 173
and Markov property, 173

state-price density, 201
stochastic differential equation (SDE),

218
stochastic discount factor, 154, 201
stochastic independence, 352

properties, 126
stochastic process, 182
strike, 3, 105
sub-replication, 40
super-replication, 40
system of equations

and hedging, 10
and measurement units, 36
complications, 12
free parameters in solution, 26, 28
general solution, 25–29
ill-conditioned, 35
numerical stability, 34
round-off errors in solution, 35–36

Taylor expansion, 334
multivariate, 335

Toft’s formula, 295, 323
trading time, 126
transaction costs, 3
transpose, 6
tree

binomial, 106
multinomial, 280–82
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unconditional expectation, 118
uninsurable scenario, 193
utility

function, 56
maximization, 59
quadratic, 67

value at risk, 370
variance

conditional, 177
properties, 126–27, 356, 359
time scaling, 127, 215

variance–covariance matrix, 100, 358
computation, 101

variance-optimal measure, 284, 314
properties, 303

Vašı́ček model, 249
vector, 3

multiplication
element-by-element, 92

multiplied by a scalar, 4
orthogonal, 30
summation, 5

graphical, 6
volatility

and trading time, 127
properties, 127
term structure, 125
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